\[\lim_{x \to 0} \frac{7x \cos x - 3 \sin x}{4x + \tan x}\]
Advertisement Remove all ads
Solution
\[\lim_{x \to 0} \left[ \frac{7x \cos x - 3 \sin x}{4x + \tan x} \right]\] It is of the form \[\left( \frac{0}{0} \right)\]
Dividing the numerator and the denominator by x:
\[\Rightarrow \lim_{x \to 0} \frac{7\cos x - 3\left( \frac{\sin x}{x} \right)}{4 + \left( \frac{\tan x}{x} \right)}\]
\[ \Rightarrow \frac{7 \lim_{x \to 0} \left( \cos x \right) - 3 \lim_{x \to 0} \left( \frac{\sin x}{x} \right)}{4 + \lim_{x \to 0} \left( \frac{\tan x}{x} \right)}\]
\[ \Rightarrow \frac{7 . 1 - 3 . 1}{4 + 1}\]
\[ \Rightarrow \frac{4}{5}\]
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads