Advertisement Remove all ads

Lim N → ∞ N 2 1 + 2 + 3 + . . . + N - Mathematics

\[\lim_{n \to \infty} \frac{n^2}{1 + 2 + 3 + . . . + n}\] 

Advertisement Remove all ads

Solution

\[\lim_{n \to \infty} \left[ \frac{n^2}{1 + 2 + 3 . . . . . n} \right]\]
\[\text{ It is of the form } \frac{\infty}{\infty} . \]
\[ \Rightarrow \lim_{n \to \infty} \left[ \frac{n^2}{n\frac{\left( n + 1 \right)}{2}} \right]\]
\[ = \lim_{n \to \infty} \left[ \frac{2n}{n + 1} \right]\]
\[\text{ Dividing the numerator and the denominator by } n:\]
\[ \lim_{n \to \infty} \frac{2}{1 + \frac{1}{n}}\]
\[ = 2\] 

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.6 | Q 8 | Page 38
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×