###### Advertisements

###### Advertisements

Let `Delta = abs (("x", "y", "z"),("x"^2, "y"^2, "z"^2),("x"^3, "y"^3, "z"^3)),` then the value of `Delta` is ____________.

#### Options

(x - y) (y - z) (z - x)

xyz

(x

^{2}+ y^{2}+ z^{2})^{2}xyz (x - y) (y - z) (z - x)

###### Advertisements

#### Solution

Let `Delta = abs (("x", "y", "z"),("x"^2, "y"^2, "z"^2),("x"^3, "y"^3, "z"^3)),` then the value of `Delta` is **xyz (x - y) (y - z) (z - x)**.

#### RELATED QUESTIONS

**Find the area of a triangle with vertices at the point given in the following:**

(2, 7), (1, 1), (10, 8)

**Find the area of a triangle with vertices at the point given in the following:**

(−2, −3), (3, 2), (−1, −8)

Show that points A (a, b + c), B (b, c + a), C (c, a + b) are collinear.

Find values of k if area of triangle is 4 square units and vertices are (k, 0), (4, 0), (0, 2)

Find values of k if area of triangle is 4 square units and vertices are (−2, 0), (0, 4), (0, k)

If area of triangle is 35 square units with vertices (2, −6), (5, 4), and (k, 4), then k is ______.

The area of a triangle is 5 sq units. Two of its vertices are (2, 1) and (3, –2). If the third vertex is (`7/2`, y). Find the value of y

**Find the area of the following triangle:**

**Find the missing value:**

Base |
Height |
Area of triangle |

15 cm | ______ | 87 cm^{2} |

ΔABC is isosceles with AB = AC = 7.5 cm and BC = 9 cm (see the given figure). The height AD from A to BC, is 6 cm. Find the area of ΔABC. What will be the height from C to AB i.e., CE?

Find the area of a triangle whose vertices are

(6,3), (-3,5) and (4,2)

Prove that (2, -2) (-2, 1) and (5, 2) are the vertices of a right-angled triangle. Find the area of the triangle and the length of the hypotenuse.

Show that the following sets of points are collinear.

(1, −1), (2, 1) and (4, 5)

Find the area of a triangle whose sides are respectively 150 cm, 120 cm and 200 cm ?

Find the area of a triangle two sides of which are 18 cm and 10 cm and the perimeter is 42cm ?

In a ΔABC, AB = 15 cm, BC = 13 cm and AC = 14 cm. Find the area of ΔABC and hence its altitude on AC ?

If A(5,2), B(2, -2) and C(-2, t) are the vertices of a right triangle with ∠B=90° , then find the value of t .

Show that the points O(0,0), A`( 3,sqrt(3)) and B (3,-sqrt(3))` are the vertices of an equilateral triangle. Find the area of this triangle.

Show that the following points are collinear:

(i) A(2,-2), B(-3, 8) and C(-1, 4)

If the area of triangle ABC formed by A(*x, y*), B(1, 2) and C(2, 1) is 6 square units, then prove that *x* + *y* = 15 ?

The coordinates of the point P dividing the line segment joining the points A (1, 3) and B (4, 6) in the ratio 2 : 1 are:

Using determinants, find the values of k, if the area of triangle with vertices (–2, 0), (0, 4) and (0, k) is 4 square units.

In ☐ ABCD, l(AB) = 13 cm, l(DC) = 9 cm, l(AD) = 8 cm, find the area of ☐ ABCD.

Using integration, find the area of the triangle whose vertices are (2, 3), (3, 5) and (4, 4).

What is the area of a triangle with base 4.8 cm and height 3.6 cm?

Find the area of the following triangle:

Find BC, if the area of the triangle ABC is 36 cm^{2} and the height AD is 3 cm.

If the sides of a triangle are 3 cm, 4 cm and 5 cm, then the area is

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base |
Height |
Area |

20 cm | 40 cm | ? |

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base |
Height |
Area |

5 feet | ? | 20 sq.feet |

The table given below contains some measures of the right angled triangle. Find the unknown values.

Base |
Height |
Area |

? | 12 m | 24 sq.m |

A field is in the shape of a right angled triangle whose base is 25 m and height 20 m. Find the cost of levelling the field at the rate of ₹ 45 per sq.m^{2}

If Δ = `|(1, x, x^2),(1, y, y^2),(1, z, z^2)|`, Δ_{1} = `|(1, 1, 1),(yz, zx, xy),(x, y, z)|`, then prove that ∆ + ∆_{1} = 0.

In a triangle ABC, if `|(1, 1, 1),(1 + sin"A", 1 + sin"B", 1 + sin"C"),(sin"A" + sin^2"A", sin"B" + sin^2"B", sin"C" + sin^2"C")|` = 0, then prove that ∆ABC is an isoceles triangle.

Let ∆ = `|("A"x, x^2, 1),("B"y, y^2, 1),("C"z, z^2, 1)|`and ∆_{1} = `|("A", "B", "C"),(x, y, z),(zy, zx, xy)|`, then ______.

If A, B, C are the angles of a triangle, then ∆ = `|(sin^2"A", cot"A", 1),(sin^2"B", cot"B", 1),(sin^2"C", cot"C", 1)|` = ______.

Show that the points (a + 5, a – 4), (a – 2, a + 3) and (a, a) do not lie on a straight line for any value of a.

The area of a triangle with vertices (–3, 0), (3, 0) and (0, k) is 9 sq.units. The value of k will be ______.

The value of the determinant `abs((1,"x","x"^3),(1,"y","y"^3),(1,"z","z"^3))` is ____________.

If the points (a_{1}, b_{1}), (a_{2}, b_{2}) and(a_{1} + a_{2}, b_{1} + b_{2}) are collinear, then ____________.

If the points (2, -3), (k, -1), and (0, 4) are collinear, then find the value of 4k.

Find the area of the triangle whose vertices are (-2, 6), (3, -6), and (1, 5).

The points (0, 5), (0, –9) and (3, 6) are collinear.

The area of a triangle with base 4 cm and height 6 cm is 24 cm^{2}.

The area of ∆ABC is 8 cm^{2} in which AB = AC = 4 cm and ∠A = 90º.

Find the cost of laying grass in a triangular field of sides 50 m, 65 m and 65 m at the rate of Rs 7 per m^{2}.

Find the area of the trapezium PQRS with height PQ given in figure

The area of a trapezium is 475 cm^{2} and the height is 19 cm. Find the lengths of its two parallel sides if one side is 4 cm greater than the other.

A rectangular plot is given for constructing a house, having a measurement of 40 m long and 15 m in the front. According to the laws, a minimum of 3 m, wide space should be left in the front and back each and 2 m wide space on each of other sides. Find the largest area where house can be constructed.

The dimensions of a rectangle ABCD are 51 cm × 25 cm. A trapezium PQCD with its parallel sides QC and PD in the ratio 9:8, is cut off from the rectangle as shown in the figure. If the area of the trapezium PQCD is `5/6` h part of the area of the rectangle, find the lengths QC and PD.

In the given figure, if PR = 12 cm, QR = 6 cm and PL = 8 cm, then QM is ______.

Area of a right-angled triangle is 30 cm^{2}. If its smallest side is 5 cm, then its hypotenuse is ______.

Area of a triangle = `1/2` base × ______.

In the given figure, area of ΔPQR is 20 cm^{2} and area of ΔPQS is 44 cm^{2}. Find the length RS, if PQ is perpendicular to QS and QR is 5 cm.

Area of a triangle PQR right-angled at Q is 60 cm^{2} in the figure. If the smallest side is 8 cm long, find the length of the other two sides.

Let a vector `αhati + βhatj` be obtained by rotating the vector `sqrt(3)hati + hatj` by an angle 45° about the origin in counter-clockwise direction in the first quadrant. Then the area of triangle having vertices (α, β), (0, β) and (0, 0) is equal to ______.

If (a, b), (c, d) and (e, f) are the vertices of ΔABC and Δ denotes the area of ΔABC, then `|(a, c, e),(b, d, f),(1, 1, 1)|^2` is equal to ______.