Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11

Let X and a Stand for Distance. is ∫ D X √ a 2 − X 2 = 1 a Sin − 1 a X Dimensionally Correct? - Physics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Let x and a stand for distance. Is
\[\int\frac{dx}{\sqrt{a^2 - x^2}} = \frac{1}{a} \sin^{- 1} \frac{a}{x}\] dimensionally correct?

Advertisement Remove all ads

Solution

Dimension of the left side of the equation= \[{\left[ \int\frac{dx}{\sqrt{\left( a^2 - x^2 \right)}} \right]} = {\left[ \int\frac{L}{\sqrt{\left( L^2 - L^2 \right)}} \right]} = \left[ L^0 \right]
\text{Dimension of the right side of the equation} = \left[ \left( \frac{1}{a} \right) \sin^{- 1} \left( \frac{a}{x} \right) \right] = \left( L^{- 1} \right)\]
So, 
\[ {\left[ \int\frac{dx}{\sqrt{\left( a^2 - x^2 \right)}} \right]} \neq \left[ \left( \frac{1}{a} \right) \sin^{- 1} \left( \frac{a}{x} \right) \right]\]

Since the dimensions on both sides are not the same, the equation is dimensionally incorrect.

Concept: What is Physics?
  Is there an error in this question or solution?

APPEARS IN

HC Verma Class 11, Class 12 Concepts of Physics Vol. 1
Chapter 1 Introduction to Physics
Exercise | Q 19 | Page 10
Share
Notifications

View all notifications


      Forgot password?
View in app×