Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals ______.
Options
`(n(n + 1)(n + 2))/6`
`(n(n + 1))/2`
`(n^2 + 3n + 2)/2`
None of these
Solution
Let Sn denote the sum of the cubes of the first n natural numbers and sn denote the sum of the first n natural numbers. Then `sum_(r = 1)^n S_r/s_r` equals `(n(n + 1)(n + 2))/6`.
Explanation:
Given that `sum_(i = 1)^n S_r/s_r = S_1/s_1 + S_2/s_2 + S_3/s_3 + ... + S_n/s_n`
Let Tn be the nth term of the above series
∴ Tn = `S_n/s_n`
= `([(n(n + 1))/2]^2)/((n(n + 1))/2)`
= `(n(n + 1))/2`
= `(n^2 + n)/2`
Now sum of the given series
`sum"T"_"n" = 1/2 sum [n^2 + n]`
= `1/2 [sum n^2 + sum n]`
= `1/2 [(n(n + 1)(2n + 1))/6 + (n(n + 1))/2]`
= `1/2 * (n(n + 1))/2 [(2n + 1)/3 + 1]`
= `(n(n + 1))/4 [(2n + 1 + 3)/3]`
= `(n(n + 1))/4 * ((2n + 4))/3`
= `(n(n + 1)(n + 2))/6`