Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation. - Mathematics

Advertisements
Advertisements

Let N denote the set of all natural numbers and R be the relation on N × N defined by (a, b) R (c, d) if ad (b + c) = bc (a + d). Show that R is an equivalence relation.

Advertisements

Solution

To prove a relation R is an equivalence relation, it will be sufficient to prove it as a reflexive, symmetric and transitive relation.

i) Reflexivity:
Let (a, b) be an arbitrary element of N × N.
Now,
a, b ∈ N

ab(a+b)=ba(a+b)

(a,b)R(a,b)

∴ (a, b)R(a, b) for all (a, b) ∈ N × N
Hence, R is reflexive.

ii) Symmetry:
Let (a, b), (c, d) be an arbitrary element of N × N such that (a, b)R(c, d).

 ad(b+c)=bc(a+d)

cb(d+a)=da(c+b)

(c,d)R(a,b)

∴ (a, b)R(c, d) ⇒ (c, d)R(a, b) for all (a, b), (c, d) ∈ N × N
Hence, R is symmetric.

iii) Transitivity:
Let (a, b), (c, d), (e, f) be an arbitrary element of N × N such that (a, b)R(c, d) and (c, d)R(e, f).

ad(b+c)=bc(a+d)

adb+adc=abc+bcd     

cd(ab)=ab(cd)      .....(1)

Also,cf(d+e)=de(c+f)

cfd+cfe=dec+def       

cd(fe)=ef(dc)  ....(2)

From (1) and (2), we have

`(a−b)/(f−e)=−(ab)/(ef)`

aefbef=abf+aeb

aef+abf=aeb+bef

af(b+e)=be(a+f)

(a, b)R(e, f)

∴(a, b)R(c, d) and (c, d)R(e, f) ⇒ (a, b)R(e, f) for all (a, b), (c, d), (e, f) ∈ N × N
Hence, R is transitive.
Thus, R being reflexive, symmetric and transitive, is an equivalence relation on N × N.

  Is there an error in this question or solution?
2014-2015 (March) Delhi Set 1

RELATED QUESTIONS

If R=[(x, y) : x+2y=8] is a relation on N, write the range of R.


determination of whether the following relations are reflexive, symmetric, and transitive:

Relation R in the set  A  = {1, 2, 3...13, 14} defined as R = {(x,y):3x - y = 0}


Show that the relation R in the set {1, 2, 3} given by R = {(1, 2), (2, 1)} is symmetric but neither reflexive nor transitive.


Show that the relation R in the set A of points in a plane given by R = {(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all points related to a point P ≠ (0, 0) is the circle passing through P with origin as centre.


Show that the relation R defined in the set A of all polygons as R = {(P1P2): P1 and P2have same number of sides}, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?


Let R be the relation in the set {1, 2, 3, 4} given by R = {(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)}. Choose the correct answer.


The binary operation *: R x R → R is defined as a *b = 2a + b Find (2 * 3)*4


Is it true that every relation which is symmetric and transitive is also reflexive? Give reasons.


Give an example of a relation which is transitive but neither reflexive nor symmetric?


Let A = {abc} and the relation R be defined on A as follows: R = {(aa), (bc), (ab)}. Then, write minimum number of ordered pairs to be added in R to make it reflexive and transitive.


Defines a relation on :
  x > y, x, y ∈  N

Determine the above relation is reflexive, symmetric and transitive.


Let Z be the set of all integers and Z0 be the set of all non-zero integers. Let a relation R on Z × Z0be defined as (a, b) R (c, d) ⇔ ad = bc for all (a, b), (c, d) ∈ Z × Z0,
Prove that R is an equivalence relation on Z × Z0.


If R and S are transitive relations on a set A, then prove that R ∪ S may not be a transitive relation on A.


If A = {2, 3, 4}, B = {1, 3, 7} and R = {(x, y) : x ∈ A, y ∈ B and x < y} is a relation from A to B, then write R−1.


Define an equivalence relation ?


Let R be the equivalence relation on the set Z of the integers given by R = { (ab) : 2 divides }.

Write the equivalence class [0].


Let the relation R be defined on N by aRb iff 2a + 3b = 30. Then write R as a set of ordered pairs


R is a relation on the set Z of integers and it is given by
(x, y) ∈ R ⇔ | x − y | ≤ 1. Then, R is ______________ .


If A = {1, 2, 3}, B = {1, 4, 6, 9} and R is a relation from A to B defined by 'x is greater than y'. The range of R is ______________ .


A relation ϕ from C to R is defined by x ϕ y ⇔ | x | = y. Which one is correct?


If R is the largest equivalence relation on a set A and S is any relation on A, then _____________ .


If R is a relation on the set A = {1, 2, 3} given by R = {(1, 1), (2, 2), (3, 3)}, then R is ____________ .


 If A = {a, b, c, d}, then a relation R = {(a, b), (b, a), (a, a)} on A is _____________ .


Mark the correct alternative in the following question:

Let L denote the set of all straight lines in a plane. Let a relation R be defined by lRm if l is perpendicular to m for all l, m  L. Then, R is ______________ .


If A = {a, b, c}, B = (x , y} find A × B.


If A = {a, b, c}, B = (x , y} find B × A.


If A = {a, b, c}, B = (x , y} find A × A.


If A = {a, b, c}, B = (x , y} find B × B.


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∩ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find A × (B ∪ C).


Let A = {1, 2, 3, 4}, B = {4, 5, 6}, C = {5, 6}. Find (A × B) ∪ (A × C).


Let A = {6, 8} and B = {1, 3, 5}.
Let R = {(a, b)/a∈ A, b∈ B, a – b is an even number}. Show that R is an empty relation from A to B.


Write the relation in the Roster form and hence find its domain and range :
R1 = {(a, a2) / a is prime number less than 15}


Write the relation in the Roster form and hence find its domain and range:

R2 = `{("a", 1/"a")  "/"  0 < "a" ≤ 5, "a" ∈ "N"}`


R = {(a, b) / b = a + 1, a ∈ Z, 0 < a < 5}. Find the Range of R.


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
symmetric but neither reflexive nor transitive


If A = {1, 2, 3, 4 }, define relations on A which have properties of being: 
reflexive, symmetric and transitive


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
an injective mapping from A to B


Given A = {2, 3, 4}, B = {2, 5, 6, 7}. Construct an example of the following:
a mapping from A to B which is not injective


Give an example of a map which is one-one but not onto


Consider the non-empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is ______.


Let R be the relation on N defined as by x + 2 y = 8 The domain of R is ____________.


Let A = {1, 2, 3}. Which of the following is not an equivalence relation on A?


If A is a finite set containing n distinct elements, then the number of relations on A is equal to ____________.


Let A = {1, 2, 3}, then the domain of the relation R = {(1, 1), (2, 3), (2, 1)} defined on A is ____________.


Let A = {1, 2, 3, 4, 5, 6} Which of the following partitions of A correspond to an equivalence relation on A?


Given set A = {1, 2, 3} and a relation R = {(1, 2), (2, 1)}, the relation R will be ____________.


If A is a finite set consisting of n elements, then the number of reflexive relations on A is


The relation > (greater than) on the set of real numbers is


Which one of the following relations on the set of real numbers R is an equivalence relation?


On the set N of all natural numbers, define the relation R by a R b, if GCD of a and b is 2. Then, R is


In a group of 52 persons, 16 drink tea but not coffee, while 33 drink tea. How many persons drink coffee but not tea?


The number of surjective functions from A to B where A = {1, 2, 3, 4} and B = {a, b} is


A market research group conducted a survey of 2000 consumers and reported that 1720 consumers like product P1 and 1450 consumers like product P2. What is the least number that must have liked both the products?


A relation 'R' in a set 'A' is called reflexive, if


Which of the following is/are example of symmetric


Let R = {(a, b): a = a2} for all, a, b ∈ N, then R salifies.


Define the relation R in the set N × N as follows:

For (a, b), (c, d) ∈ N × N, (a, b) R (c, d) if ad = bc. Prove that R is an equivalence relation in N × N.


Let a set A = A1 ∪ A2 ∪ ... ∪ Ak, where Ai ∩ Aj = Φ for i ≠ j, 1 ≤ i, j ≤ k. Define the relation R from A to A by R = {(x, y): y ∈ Ai if and only if x ∈ Ai, 1 ≤ i ≤ k}. Then, R is ______.


Let f(x)= ax2 + bx + c be such that f(1) = 3, f(–2) = λ and f(3) = 4. If f(0) + f(1) + f(–2) + f(3) = 14, then λ is equal to ______.


Let R1 and R2 be two relations defined as follows :

R1 = {(a, b) ∈ R2 : a2 + b2 ∈ Q} and

R2 = {(a, b) ∈ R2 : a2 + b2 ∉ Q}, where Q is the set of all rational numbers. Then ______


Let R = {(x, y) : x, y ∈ N and x2 – 4xy + 3y2 = 0}, where N is the set of all natural numbers. Then the relation R is ______.


lf A = {x ∈ z+ : x < 10 and x is a multiple of 3 or 4}, where z+ is the set of positive integers, then the total number of symmetric relations on A is ______.


Let A = {1, 2, 3, 4} and let R = {(2, 2), (3, 3), (4, 4), (1, 2)} be a relation on A. Then R is ______.


Let N be the set of all natural numbers and R be a relation on N × N defined by (a, b) R (c, d) `⇔` ad = bc for all (a, b), (c, d) ∈ N × N. Show that R is an equivalence relation on N × N. Also, find the equivalence class of (2, 6), i.e., [(2, 6)].


A relation R on (1, 2, 3) is given by R = {(1, 1), (2, 2), (1, 2), (3, 3), (2, 3)}. Then the relation R is ______.


Let L be a set of all straight lines in a plane. The relation R on L defined as 'perpendicular to' is ______.


Share
Notifications



      Forgot password?
Use app×