Advertisement Remove all ads

Let → a = ^ i + 4 ^ j + 2 ^ k , → b = 3 ^ i − 2 ^ j + 7 ^ k and → c = 2 ^ i − ^ j + 4 ^ k . Find a vector → d which is perpendicular to both → a and → d and → c ⋅ → d = 15 . - Mathematics

Sum

Let \[\vec{a} = \hat{ i } + 4 \hat{ j }  + 2 \hat{ k } , \vec{b} = 3 \hat{ i }- 2 \hat{ j } + 7 \hat{ k }  \text{ and } \vec{c} = 2 \hat{ i } - \hat{ j }  + 4 \hat{ k }  .\]  Find a vector \[\vec{d}\] which is perpendicular to both \[\vec{a} \text{ and } \vec{d}\] \[\text{ and }  \vec{c} \cdot \vec{d} = 15 .\]

 
 

 

Advertisement Remove all ads

Solution

\[\text{ Given } : \]
\[ \vec{a} = \hat{ i }  + 4 \hat{ j } + 2 \hat{ k }  \]
\[ \vec{b} = 3 \hat{ i } - 2 \hat{ j } + 7 \hat{ k }  \]
\[ \vec{c} = 2 \hat{ i } - \hat{ j }  + 4 \hat{ k }  \]
\[\text{ Since d is perpendicular to both a and b, it is parallel to } \vec{a} \times \vec{b} . \]
\[ \text{ Suppose } d = \lambda\left( \vec{a} \times \vec{b} \right) \text{ for some scalar } \lambda . \]
\[d = \lambda \begin{vmatrix}\hat{ i }  & \hat{ j } & \hat{ k } \\ 1 & 4 & 2 \\ 3 & - 2 & 7\end{vmatrix}\]
\[ = \lambda \left[ \left( 28 + 4 \right) \hat{ i }  - \left( 7 - 6 \right) \hat{ j }  + \left( - 2 - 12 \right) \hat{ k }  \right]\]
\[ = \lambda \left[ 32 \hat{ i } - \hat{ j }  - 14 \hat{ k }  \right]\]
\[ \vec{c .} \vec{d} = 15 (\text{ Given } )\]
\[ \Rightarrow \left( 2 \hat{ i }  - \hat{ j }  + 4 \hat{ k }  \right) . \lambda \left( 32 \hat{ i }- \hat{ j } - 14 \hat{ k } \right) = 15\]
\[ \Rightarrow \lambda\left( 64 + 1 - 56 \right) = 15\]
\[ \Rightarrow \lambda = \frac{5}{3}\]
\[ \therefore \vec{d} = \frac{5}{3}\left( 32 \hat{ i }  - \hat{ j } - 14 \hat{ k } \right)\]
\[ \Rightarrow \vec{d} = \frac{1}{3}\left( 160 \hat{ i }  - 5 \hat{ j } - 70 \hat{ k } \right)\]

Notes

The question should contain  \["\text{ which is perpendicular to both } \vec{a} \text{ and }  \vec{b} "\]
\[\text{ instead of } \]
\["\text { which is perpendicular to both }  \vec{a} \text{ and } \vec{d} "\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 12 Maths
Chapter 25 Vector or Cross Product
Exercise 25.1 | Q 27 | Page 30
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×