Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11
Advertisement Remove all ads

Let F(X) = 2x + 5 and G(X) = X2 + X. Describe (I) F + G (Ii) F − G (Iii) Fg (Iv) F/G. Find the Domain in Each Case. - Mathematics

Let f(x) = 2x + 5 and g(x) = x2 + x. Describe (i) f + g (ii) f − g (iii) fg (iv) f/g. Find the domain in each case.

 
Advertisement Remove all ads

Solution

Given:
f(x) = 2x + 5 and g(x) = x2 + x
Clearly, f (x) and g (x) assume real values for all x.
Hence,
domain (f) = R and domain (g) = R.

\[\therefore D\left( f \right) \cap D\left( g \right) = R\]

Now,
(i) (g) : R → R is given by (f + g) (x) = (x) + g (x) = 2x + 5 + x2 + x = x2 + 3x + 5.
 Hence, domain ( f + g) = R .

(ii) (f - g) : R → R is given by (f - g) (x) = f (x) - g (x) = (2x + 5) - (x2 + x) = 5 + x -x2
 Hence, domain ( f -g) = R.

(iii) (fg) : R → R is given by (fg) (x) = f(x).g(x) = (2x + 5)(x2 + x)
                                                                   = 2x3 + 2x2 + 5x2 +5x
                                                                     = 2x3 + 7x2 + 5x
Hence, domain ( f.g) = R .

(iv) Given:
 g(x) = x2 + x
g(x) = 0 ⇒ x2 + x = 0 = x(x+ 1) = 0
⇒ x = 0 or (x + 1) = 0
⇒ x = 0 or x = - 1

Now , 

\[\frac{f}{g}: R - \left\{ - 1, 0 \right\} \to R \text{ is given by } \left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{2x + 5}{x^2 + x}\]

Hence,

\[\text{ domain } \left( \frac{f}{g} \right) = R - \left\{ - 1, 0 \right\}\]

 

 

 

 
 
 
 
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 3 Functions
Exercise 3.4 | Q 2 | Page 38
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×