Let f and g be two real functions defined by \[f\left( x \right) = \sqrt{x + 1}\] and \[g\left( x \right) = \sqrt{9 - x^2}\] . Then, describe function:
(iv) \[\frac{f}{g}\]
Advertisement Remove all ads
Solution
Given:
\[f\left( x \right) = \sqrt{x + 1}\text{ and } g\left( x \right) = \sqrt{9 - x^2}\]
Clearly,
\[f\left( x \right) = \sqrt{x + 1}\] is defined for all x ≥ - 1.
Thus, domain (f) = [1, ∞]
Again,
Thus, domain (f) = [1, ∞]
Again,
\[g\left( x \right) = \sqrt{9 - x^2}\] is defined for 9 -x2 ≥ 0 ⇒ x2 - 9 ≤ 0
⇒ x2 - 32 ≤ 0
⇒ (x + 3)(x - 3) ≤ 0
⇒ \[x \in \left[ - 3, 3 \right]\]
⇒ \[x \in \left[ - 3, 3 \right]\]
Thus, domain (g) = [ - 3, 3]
Now,
domain ( f ) ∩ domain( g ) = [ -1, ∞] ∩ [- 3, 3] = [ -1, 3]
(iv) \[\frac{f}{g}: \left[ - 1, 3 \right] \to \text{ R is given by } \left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{\sqrt{x + 1}}{\sqrt{9 - x^2}} = \sqrt{\frac{x + 1}{9 - x^2}}\].
Concept: Concept of Functions
Is there an error in this question or solution?
Advertisement Remove all ads
APPEARS IN
Advertisement Remove all ads
Advertisement Remove all ads