Advertisement Remove all ads

Let F : [0, ∞) → R and G : R → R Be Defined by F ( X ) = √ X and G(X) = X. Find F + G, F − G, Fg and F G . - Mathematics

Let f : [0, ∞) → R and g : R → R be defined by \[f\left( x \right) = \sqrt{x}\] and g(x) = x. Find f + gf − gfg and \[\frac{f}{g}\] .

 
 
Advertisement Remove all ads

Solution

It is given that f : [0, ∞) → R and g : R → R such that

\[f\left( x \right) = \sqrt{x}\]  and g(x) = x .  \[D\left( f + g \right) = [0, \infty ) \cap R = [0, \infty )\]
So, f + g : [0, ∞) → R is given by 
\[\left( fg \right)\left( x \right) = f\left( x \right)g\left( x \right) = \sqrt{x} . x = x^\frac{3}{2}\]
\[D\left( \frac{f}{g} \right) = \left[ D\left( f \right) \cap D\left( g \right) - \left\{ x: g\left( x \right) = 0 \right\} \right] = \left( 0, \infty \right)\]
So,
\[\frac{f}{g}: \left( 0, \infty \right) \to R\]  is given by
\[\left( \frac{f}{g} \right)\left( x \right) = \frac{f\left( x \right)}{g\left( x \right)} = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}}\]
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 3 Functions
Exercise 3.4 | Q 9 | Page 38
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×