# Let A1, A2, ..., an Be Fixed Real Numbers Such that F(X) = (X − A1) (X − A2) ... (X − An) What is Lim X → a 1 F ( X ) ? Compute Lim X → a F ( X ) . - Mathematics

Let a1a2, ..., an be fixed real numbers such that
f(x) = (x − a1) (x − a2) ... (x − an)
What is $\lim_{x \to a_1} f\left( x \right)?$ Compute $\lim_{x \to a} f\left( x \right) .$

#### Solution

$f\left( x \right) = \left( x - a_1 \right) \left( x - a_2 \right) . . . \left( x - a_n \right)$
$\lim_{x \to a_1} f\left( x \right)$
$= \lim_{x \to a_1} \left[ \left( x - a_1 \right) \left( x - a_2 \right) . . . \left( x - a_n \right) \right]$
$= \left( a_1 - a_1 \right) \left( a_1 - a_2 \right) . . . \left( a_1 - a_n \right)$
$= 0$
$\lim_{x \to a} f\left( x \right)$
$= \lim_{x \to a} \left( x - a_1 \right) \left( x - a_2 \right) . . . \left( x - a_n \right)$
$= \left( a - a_1 \right) \left( a - a_2 \right) . . . \left( a - a_n \right)$

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.1 | Q 11 | Page 11