Advertisement Remove all ads

Let A1, A2, ..., an Be Fixed Real Numbers Such that F(X) = (X − A1) (X − A2) ... (X − An) What is Lim X → a 1 F ( X ) ? Compute Lim X → a F ( X ) . - Mathematics

Let a1a2, ..., an be fixed real numbers such that
f(x) = (x − a1) (x − a2) ... (x − an)
What is \[\lim_{x \to a_1} f\left( x \right)?\] Compute \[\lim_{x \to a} f\left( x \right) .\] 

Advertisement Remove all ads

Solution

\[f\left( x \right) = \left( x - a_1 \right) \left( x - a_2 \right) . . . \left( x - a_n \right)\]
\[ \lim_{x \to a_1} f\left( x \right)\]
\[ = \lim_{x \to a_1} \left[ \left( x - a_1 \right) \left( x - a_2 \right) . . . \left( x - a_n \right) \right]\]
\[ = \left( a_1 - a_1 \right) \left( a_1 - a_2 \right) . . . \left( a_1 - a_n \right)\]
\[ = 0\]
\[ \lim_{x \to a} f\left( x \right)\]
\[ = \lim_{x \to a} \left( x - a_1 \right) \left( x - a_2 \right) . . . \left( x - a_n \right)\]
\[ = \left( a - a_1 \right) \left( a - a_2 \right) . . . \left( a - a_n \right)\]

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

RD Sharma Class 11 Mathematics Textbook
Chapter 29 Limits
Exercise 29.1 | Q 11 | Page 11
Advertisement Remove all ads

Video TutorialsVIEW ALL [1]

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×