Advertisement Remove all ads

Let A, B, C, D be any four points in space. Prove that ABCDBCADCABD|AB¯×CD¯+BC¯×AD¯+CA¯+BD¯| = 4 (area of triangle ABC). - Mathematics and Statistics

Advertisement Remove all ads
Advertisement Remove all ads
Sum

Let A, B, C, D be any four points in space. Prove that `|bar"AB" xx bar"CD" + bar"BC" xx bar"AD" + bar"CA" + bar"BD"|` = 4 (area of triangle ABC).

Advertisement Remove all ads

Solution

Let A, B, C, D have position vectors `bar"a", bar"b", bar"c", bar"d"` respectively.

Consider `bar"AB" xx bar"CD" + bar"BC" xx bar"AD" + bar"CA" xx bar"BD"`

`= (bar"b" - bar"a") xx (bar"d" - bar"c") + (bar"c" - bar"b") xx (bar"d" - bar"a") + (bar"a" - bar"c") xx (bar"d" - bar"b")`

`= bar"b" xx (bar"d" - bar"c") - bar"a" xx (bar"d" - bar"c") + bar"c" xx (bar"d" - bar"a") - bar"b" xx (bar"d" - bar"a") + bar"a" xx (bar"d" - bar"b") - bar"c" xx (bar"d" - bar"b")`

`= bar"b" xx bar"d" - bar"b" xx bar"c" - bar"a" xx bar"d" + bar"a" xx bar"c" + bar"c" xx bar"d" - bar"c" xx bar"a" - bar"b" xx bar"d" + bar"b" xx bar"a" + bar"a" xx bar"d" - bar"a" xx bar"b" - bar"c" xx bar"d" + bar"c" xx bar"b"`

`= bar"b" xx bar"d" - bar"b" xx bar"c" - bar"a" xx bar"d" - bar"c" xx bar"a" + bar"c" xx bar"d" - bar"c" xx bar"a" - bar"b" xx bar"d" - bar"a" xx bar"b" + bar"a" xx bar"d" - bar"a" xx bar"b" - bar"c" xx bar"d" - bar"b" xx bar"c"     ....[because bar"p" xx bar"q" = - bar"q" xx bar"p"]`

`= - 2(bar"a" xx bar"b" + bar"b" xx bar"c" + bar"c" xx bar"a")`

∴ `|bar"AB" xx bar"CD" + bar"BC" xx bar"AD" + bar"CA" xx bar"BD"|`

= `|- 2(bar"a" xx bar"b" + bar"b" xx bar"c" + bar"c" xx bar"a")|`

`= 4[1/2 |bar"a"xx bar"b" + bar"b" xx bar"c" + bar"c" xx bar"a"|]`

= 4(are of Δ ABC).

Concept: Representation of Vector
  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×