Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

Let A, B and C be sets. Then show that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Advertisement Remove all ads

Solution

A, B and C are three given sets

To prove: A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Let x ∈ A ∩ (B ∪ C)

⇒ x ∈ A and x ∈ (B ∪ C)

⇒ x ∈ A and (x ∈ B or x ∈ C)

⇒ (x ∈ A or x ∈ B) or (x ∈ A or x ∈ C)

⇒ x ∈ A ∩ B or x ∈ A ∩ C

⇒ x ∈ (A ∩ B) ∪ (A ∩ C)

⇒ A ∩ (B ∩ C) ⊂ (A ∩ B) ∪(A ∩ C)  ......(i)

Let y ∈ (A ∩ B) ∪ (A ∩ C)

⇒ y ∈ A ∩ B or x ∈ A ∩ C 

⇒ (y ∈ A or y ∈ B) or (y ∈ A or y ∈ C)

⇒ y ∈ A and (y ∈ B or y ∈ C)

⇒ y ∈ A and y ∈ (B ∪ C)

⇒ y ∈ A ∩ (B ∩ C) 

⇒ (A ∩ B) ∪ (A ∩ C) ⊂ A ∩ (B ∪ C)  ......(ii)

We know that:

P ⊂ Q and Q ⊂ P 

⇒ P = Q

From (i) and (ii)

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

Hence Proved

Concept: Types of Sets - Universal Set
  Is there an error in this question or solution?

APPEARS IN

NCERT Mathematics Exemplar Class 11
Chapter 1 Sets
Exercise | Q 23 | Page 14

Video TutorialsVIEW ALL [1]

Share
Notifications

View all notifications


      Forgot password?
View in app×