Department of Pre-University Education, KarnatakaPUC Karnataka Science Class 11

Let → a = 4 → I + 3 → J and → B = 3 → I + 4 → J . (A) Find the Magnitudes of (A) → a , (B) → B ,(C) → a + → B and (D) → a − → B . - Physics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Answer in Brief

Let \[\vec{a} = 4 \vec{i} + 3 \vec{j} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j}\]. Find the magnitudes of (a)  \[\vec{a}\] ,  (b)  \[\vec{b}\] ,(c) \[\vec{a} + \vec{b} \text { and }\] (d) \[\vec{a} - \vec{b}\].

Advertisement Remove all ads

Solution

Given: \[\vec{a} = 4 \vec{i} + 3 \vec{j} \text { and } \vec{b} = 3 \vec{i} + 4 \vec{j}\]

(a) Magnitude of  \[\vec{a}\] is given by \[\left| \vec{a} \right| = \sqrt{4^2 + 3^2} = \sqrt{16 + 9} = 5\] 

Magnitude of  \[\vec{b}\] is  given by \[\left| \vec{b} \right| = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = 5\]

(c) \[\vec{a} + \vec{b} = (4 \hat {i} + 3 \hat {j} ) + (3 \hat { i} + 4 \hat { j} ) = (7 \hat { i} + 7 \hat {j} )\]

∴ Magnitude of vector \[\vec{a} + \vec{b}\] is given by \[\left| \vec{a} + \vec{b} \right| = \sqrt{49 + 49} = \sqrt{98} = 7\sqrt{2}\]

(d) \[\vec{a} - \vec{b} = \left( 4 \vec{i} + 3 \vec{j} \right) - \left( 3 \vec{i} + 4 \vec{j} \right) = \vec{i} - \vec{j}\]

∴ Magnitude of vector \[\vec{a} - \vec{b}\]  is given by \[\left| \vec{a} - \vec{b} \right| = \sqrt{\left( 1 \right)^2 + \left( - 1 \right)^2} = \sqrt{2}\]

Concept: What is Physics?
  Is there an error in this question or solution?
Chapter 2: Physics and Mathematics - Exercise [Page 29]

APPEARS IN

HC Verma Class 11, Class 12 Concepts of Physics Vol. 1
Chapter 2 Physics and Mathematics
Exercise | Q 4 | Page 29
Share
Notifications

View all notifications


      Forgot password?
View in app×