Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Answer in Brief
Sum
Let \[\vec{A} = 3 \vec{i} + 4 \vec{j}\]. Write a vector \[\vec{B}\] such that \[\vec{A} \neq \vec{B}\], but A = B.
Advertisement Remove all ads
Solution
A vector \[\vec{B}\] such that \[\vec{A} \neq \vec{B}\], but A = B are as follows:
\[(i) \ \vec{ B} = 3 \vec{i} - 4 \vec{j} \]
\[(ii) \ \vec{ B} = 3 \vec{j} + 4 \vec{k} \]
\[(iii) \ \vec{ B} = 3 \vec{k} + 4 \vec{i} \]
\[(iv) \ \vec{ B} = 3 \vec{j} - 4 \vec{k}\]
Concept: What is Physics?
Is there an error in this question or solution?