Share

Prove That: (X^A/X^B)^(A^2+Ab+B^2)Xx(X^B/X^C)^(B^2+Bc+C^2)Xx(X^C/X^A)^(C^2+Ca+A^2)=1 - CBSE Class 9 - Mathematics

ConceptLaws of Exponents for Real Numbers

Question

Prove that:

(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)=1

Solution

Consider the left hand side:

(x^a/x^b)^(a^2+ab+b^2)xx(x^b/x^c)^(b^2+bc+c^2)xx(x^c/x^a)^(c^2+ca+a^2)

=x^(a(a^2+ab+b^2))/x^(b(a^2+ab+b^2))xxx^(b(b^2+bc+c^2))/x^(c(b^2+bc+c^2))xxx^(c(c^2+ca+a^2))/x^(a(c^2+ca+a^2))

=x^(a(a^2+ab+b^2)-b(a^2+ab+b^2))xxx^(b(b^2+bc+c^2)-c(b^2+bc+c^2))xxx^(c(c^2+ca+a^2)-a(c^2+ca+a^2))

=x^((a-b)(a^2+ab+b^2))xxx^((b-c)(b^2+bc+c^2))xxx^((c-a)(c^2+ca+a^2))

=x^((a^3-b^3))xxx((b^3-c^3))xxx^((c^3-a^3))

=x^((a^3-b^3+b^3-c^3+c^3-a^3))

=x^0

= 1

Left hand side is equal to right hand side.
Hence proved.

Is there an error in this question or solution?

APPEARS IN

RD Sharma Solution for Mathematics for Class 9 by R D Sharma (2018-19 Session) (2018 to Current)
Chapter 2: Exponents of Real Numbers
Ex. 2.10 | Q: 3.1 | Page no. 12

Video TutorialsVIEW ALL [1]

Solution Prove That: (X^A/X^B)^(A^2+Ab+B^2)Xx(X^B/X^C)^(B^2+Bc+C^2)Xx(X^C/X^A)^(C^2+Ca+A^2)=1 Concept: Laws of Exponents for Real Numbers.
S