CBSE Class 9CBSE
Share
Notifications

View all notifications

Prove That: `1/(1+X^(B-a)+X^(C-a))+1/(1+X^(A-b)+X^(C-b))+1/(1+X^(B-c)+X^(A-c))=1` - CBSE Class 9 - Mathematics

Login
Create free account


      Forgot password?

Question

Prove that:

`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))=1`

Solution

Consider the left hand side:

`1/(1+x^(b-a)+x^(c-a))+1/(1+x^(a-b)+x^(c-b))+1/(1+x^(b-c)+x^(a-c))`

`=1/(1+x^b/x^a+x^c/x^a)+1/(1+x^a/x^b+x^c/x^b)+1/(1+x^b/x^c+x^a/x^c)`

`=1/((x^a+x^b+x^c)/x^a)+1/((x^b+x^a+x^c)/x^b)+1/((x^c+x^b+x^a)/x^c)`

`=x^a/(x^a+x^b+x^c)+x^b/(x^b+x^a+x^c)+x^c/(x^c+x^b+x^a)`

`=(x^a+x^b+x^c)/(x^a+x^b+x^c)`

= 1

Therefore left hand side is equal to the right hand side. Hence proved.

  Is there an error in this question or solution?

APPEARS IN

 RD Sharma Solution for Mathematics for Class 9 by R D Sharma (2018-19 Session) (2018 to Current)
Chapter 2: Exponents of Real Numbers
Ex. 2.10 | Q: 4.2 | Page no. 12

Video TutorialsVIEW ALL [1]

Solution Prove That: `1/(1+X^(B-a)+X^(C-a))+1/(1+X^(A-b)+X^(C-b))+1/(1+X^(B-c)+X^(A-c))=1` Concept: Laws of Exponents for Real Numbers.
S
View in app×