Share

# If a and B Are Different Positive Primes Such that ((A^-1b^2)/(A^2b^-4))^7div((A^3b^-5)/(A^-2b^3))=A^Xb^Y, Find X and Y. - CBSE Class 9 - Mathematics

ConceptLaws of Exponents for Real Numbers

#### Question

If a and b are different positive primes such that

((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y, find x and y.

#### Solution

((a^-1b^2)/(a^2b^-4))^7div((a^3b^-5)/(a^-2b^3))=a^xb^y

rArr((a^-7b^14)/(a^14b^-28))div((a^3b^-5)/(a^-2b^3))=a^xb^y

rArr(a^(-7-14)b^(14+28))div(a^(3+2)b^(-5-3))=a^xb^y

rArr(a^-21b^42)div(a^5b^-8)=a^xb^y

rArra^(-21-5)b^(42+8)=a^xb^y

rArra^-26b^50=a^xb^y

⇒ x = -26 and y = 50

Is there an error in this question or solution?

#### APPEARS IN

RD Sharma Solution for Mathematics for Class 9 by R D Sharma (2018-19 Session) (2018 to Current)
Chapter 2: Exponents of Real Numbers
Ex. 2.20 | Q: 18.1 | Page no. 26

#### Video TutorialsVIEW ALL [1]

Solution If a and B Are Different Positive Primes Such that ((A^-1b^2)/(A^2b^-4))^7div((A^3b^-5)/(A^-2b^3))=A^Xb^Y, Find X and Y. Concept: Laws of Exponents for Real Numbers.
S