खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा. L(6, 4) , M(-5, -3) , N(-6, 8) - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

खालील बिंदूंना जोडणारे रेषाखंड त्रिकोण तयार करू शकतील का? त्रिकोण तयार झाल्यास त्याचा बाजूंवरून होणारा प्रकार सांगा.

L(6, 4) , M(-5, -3) , N(-6, 8) 

Advertisements

Solution

अंतराच्या सूत्रानुसार,

d(L, M) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

= `sqrt((-5 - 6)^2 + (-3 - 4)^2)`

= `sqrt((-11)^2 + (-7)^2)`

= `sqrt(121 + 49)`

∴ d(L, M) = `sqrt170`  .....(i)

d(M, N) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

= `sqrt([-6 - (-5)]^2 + [8 - (-3)]^2)`

= `sqrt((-6 + 5)^2 + (8 + 3)^2)`

= `sqrt((-1)^2 + 11^2) = sqrt(1 + 121)`

∴ d(M, N) = `sqrt122`  .....(ii)

d(L, N) = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`

= `sqrt((-6-6)^2 + (8 - 4)^2)`

= `sqrt((-12)^2 + (4)^2) = sqrt(144 + 16)`

∴ d(L, N) = `sqrt160` .....(iii)

(ii) आणि (iii) मिळवले असता

d(M, N) + d(L, N) = `sqrt122` + `sqrt160`

`sqrt122` + `sqrt160` > `sqrt170`

∴ d(M, N) + d(L, N) > d(L, M)

∴ बिंदू L, M आणि N हे एकरेषीय बिंदू नाहीत.

तीन नैकरेषीय बिंदूंमधून त्रिकोण तयार करता येतो.

∴ दिलेल्या बिंदूंना जोडणाऱ्या रेषाखंडांपासून त्रिकोण तयार होतो.

तसेच, MN ≠ LN ≠ LM

∴ ΔLMN हा विषमभुज त्रिकोण आहे.

∴ बिंदू L, M आणि N यांना जोडणारे रेषाखंड विषमभुज त्रिकोण तयार करतील.

Concept: अंतराचे सूत्र (Distance Formula)
  Is there an error in this question or solution?
Chapter 5: निर्देशक भूमिती - संकीर्ण प्रश्नसंग्रह 5 [Page 123]

APPEARS IN

Balbharati Mathematics 2 Geometry 10th Standard SSC Maharashtra State Board [गणित २ भूमिती इयत्ता १० वी]
Chapter 5 निर्देशक भूमिती
संकीर्ण प्रश्नसंग्रह 5 | Q 8. (1) | Page 123

RELATED QUESTIONS

खालील बिंदू एकरेषीय आहेत की नाहीत हे ठरवा.

L(-2, 3), M(1, -3), N(5, 4)


X-अक्षावरील असा बिंदू शोधा की जो P(2,-5) आणि Q(-2,9) पासून समदूर असेल.


खालील बिंदूंतील अंतर काढा. 

A(a, 0), B(0, a)


खालील बिंदूंतील अंतर काढा. 

P(-6, -3), Q(-1, 9)


एका त्रिकोणाचे शिरोबिंदू A(-3,1), B(0,-2) आणि C(1,3) आहेत, तर त्या त्रिकोणाच्या परिकेंद्राचे निर्देशक काढा.


जर P(2,1), Q(-1,3), R(-5,-3) आणि S(-2,-5) तर `square`PQRS हा आयत आहे हे दाखवा.


बिंदू P(–1, 1) आणि बिंदू Q(5, –7) आहेत. तर बिंदू P आणि Q मधील अंतर ______ 


बिंदू A(–3, 4) आणि आरंभबिंदू O यांमधील अंतर काढा.


दाखवा की, बिंदू (11, –2) हा (4, –3) आणि (6, 3) या बिंदूंपासून समदूर आहे.


(2, 0), (–2, 0) आणि (0, 2) हे त्रिकोणाचे शिरोबिंदू आहेत हे दाखवा. तसेच त्या त्रिकोणाचा प्रकार सकारण ठरवा.


Share
Notifications



      Forgot password?
Use app×