जर Δ PQR मध्ये PM = 15, PQ = 25, PR = 20, NR = 8 तर रेषा NM ही बाजू RQ ला समांतर आहे का? कारण लिहा. - Mathematics 2 - Geometry [गणित २ - भूमिती]

Advertisements
Advertisements
Sum

जर Δ PQR मध्ये PM = 15, PQ = 25, PR = 20, NR = 8 तर रेषा NM ही बाजू RQ ला समांतर आहे का? कारण लिहा.

 

Advertisements

Solution

PN + NR = PR .......[P–N–R]

∴ PN + 8 = 20

∴ PN = 20 – 8 = 12

तसेच, PM + MQ = PQ .........[P–M–Q]

∴ 15 + MQ = 25

∴ MQ = 25 – 15 = 10

`"PN"/"NR" = 12/8`

∴ `"PN"/"NR" = 3/2`   .......(i)

`"PM"/"MQ" = 15/10`  

∴ `"PM"/"MQ" = 3/2` ......(ii)

ΔPQR मध्ये,

`"PN"/"NR" = "PM"/"MQ" = 3/2` ........[(i) व (ii) वरून]

∴ रेषा NM || बाजू RQ ......[प्रमाणाच्या मूलभूत प्रमेयाचा व्यत्यास]

Concept: प्रमाणाचे मूलभूत प्रमेय
  Is there an error in this question or solution?
Chapter 1: समरूपता - सरावसंच 1.2 [Page 13]

RELATED QUESTIONS

आकृतीत काही कोनांची मापे दिली आहेत त्यावरून दाखवा, की `"AP"/"PB"= "AQ"/"QC"`

  


दिलेल्या आकृती मध्ये त्रिकोणाच्या अंतर्भागात X हा एक कोणताही बिंदू आहे. बिंदू X हा त्रिकोणाच्या शिरोबिंदूंशी जोडला आहे. तसेच रेख PQ || रेख DE, रेख QR || रेख EF तर रेख PR || रेख DF हे सिद्ध करण्यासाठी खालील चौकटी पूर्ण करा.

सिद्धता: Δ XDE मध्ये PQ || DE .............. `square`

∴ `"XP"/square = square/"QE"` ...........(I) (प्रमाणाचे मूलभूत प्रमेय )

Δ XEF मध्ये QR || EF ................. `square`

∴ `square/square` = `square/square`  ..........(II) `square`

∴ `square/square` = `square/square`  .......... विधान (I) व (II) वरून

∴ रेख PR || रेख DF .......... (प्रमाणाच्या मूलभूत प्रमेयाचा व्यत्यास) 


आकृती मध्ये A – D – C व B – E – C . रेख DE || बाजू AB. जर AD = 5, DC = 3, BC = 6.4 तर BE काढा.


आकृतीमध्ये रेख DE || रेख BC, तर पुढीलपैकी सत्य विधान कोणते?

 


आकृतीमध्ये रेषा BC || रेषा DE, AB = 2, BD = 3, AC = 4 व CX = x तर x ची किंमत काढा.


आकृतीमध्ये रेख PQ || बाजू BC, AP = x + 3, PB = x - 3, AQ = x + 5, QC = x – 2, तर x ची किंमत काढण्यासाठी पुढील कृती पूर्ण करा.

∆PQB मध्ये रेख PQ || बाजू BC.

`"AP"/"PB" = "AQ"/square` ...........[`square`]

`(x + 3)/(x - 3) = (x + 5)/square`

(x + 3) `square` = (x + 5) (x– 3)

x2 + x – `square` = x2 + 2x – 15

x = `square` 


आकृतीमध्ये, PS = 2, SQ = 6, QR = 5, PT = x आणि TR = y, तर x व y च्या योग्य किमतीच्या अशा जोड्या शोधा, की ज्यामुळे रेषा ST || बाजू QR असेल.


"त्रिकोणाच्या एका बाजूला समांतर असणारी रेषा त्याच्या उरलेल्या बाजूंना भिन्न बिंदूत छेदत असेल, तर ती रेषा त्या बाजूंना एकाच प्रमाणात विभागते.” हे सिद्‌ध करा.


Share
Notifications



      Forgot password?
Use app×