###### Advertisements

###### Advertisements

Is the triangle with sides 25 cm, 5 cm and 24 cm a right triangle? Give reasons for your answer.

###### Advertisements

#### Solution

According to the question,

Let us assume that,

A = 25 cm

B = 5 cm

C = 24 cm

Now, Using Pythagoras Theorem,

We have,

A^{2} = B^{2} + C^{2}

B^{2} + C^{2} = (5)^{2} + (24)^{2}

B^{2} + C^{2} = 25 + 576

B^{2} + C^{2} = 601

A^{2} = 600

600 ≠ 601

A^{2} ≠ B^{2} + C^{2}

Since the sides does not satisfy the property of Pythagoras theorem, triangle with sides 25 cm, 5 cm and 24 cm is not a right triangle.

#### APPEARS IN

#### RELATED QUESTIONS

ABCD is a rectangle whose three vertices are B (4, 0), C(4, 3) and D(0,3). The length of one of its diagonals is

(A) 5

(B) 4

(C) 3

(D) 25

Side of a triangle is given, determine it is a right triangle.

`(2a – 1) cm, 2\sqrt { 2a } cm, and (2a + 1) cm`

The perpendicular AD on the base BC of a ∆ABC intersects BC at D so that DB = 3 CD. Prove that `2"AB"^2 = 2"AC"^2 + "BC"^2`

ABC is a right triangle right-angled at C. Let BC = a, CA = b, AB = c and let p be the length of perpendicular from C on AB, prove that

(i) cp = ab

`(ii) 1/p^2=1/a^2+1/b^2`

In Figure ABD is a triangle right angled at A and AC ⊥ BD. Show that AC^{2} = BC × DC

ABC is an isosceles triangle with AC = BC. If AB^{2} = 2AC^{2}, prove that ABC is a right triangle.

Prove that, in a right-angled triangle, the square of the hypotenuse is equal to the sum of the square of remaining two sides

**Identify, with reason, if the following is a Pythagorean triplet.**(24, 70, 74)

For finding AB and BC with the help of information given in the figure, complete following activity.

AB = BC ..........

\[\therefore \angle BAC = \]

\[ \therefore AB = BC =\] \[\times AC\]

\[ =\] \[\times \sqrt{8}\]

\[ =\] \[\times 2\sqrt{2}\]

=

In the given figure, ∠DFE = 90°, FG ⊥ ED, If GD = 8, FG = 12, find (1) EG (2) FD and (3) EF

Find the length diagonal of a rectangle whose length is 35 cm and breadth is 12 cm.

Walls of two buildings on either side of a street are parellel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m. On turning the ladder over to the other side of the street , its top touches the window of the other building at a height 4.2 m. Find the width of the street.

In ∆ABC, AB = 10, AC = 7, BC = 9, then find the length of the median drawn from point C to side AB.

Find the length of the hypotenuse of a right angled triangle if remaining sides are 9 cm and 12 cm.

Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was \[15\sqrt{2}\]

km. Find their speed per hour.

In ∆ABC, ∠BAC = 90°, seg BL and seg CM are medians of ∆ABC. Then prove that:

4(BL^{2 }+ CM^{2}) = 5 BC^{2}

^{}

In ∆ABC, seg AD ⊥ seg BC, DB = 3CD.

Prove that: 2AB^{2 }= 2AC^{2 }+ BC^{2}

^{}

**A ladder 13 m long rests against a vertical wall. If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from the ground.**

If the sides of the triangle are in the ratio 1: `sqrt2`: 1, show that is a right-angled triangle.

**In triangle ABC, AB = AC = x, BC = 10 cm and the area of the triangle is 60 cm ^{2}.**

Find x.

**In triangle ABC, given below, AB = 8 cm, BC = 6 cm and AC = 3 cm. Calculate the length of OC.**

**In the following figure, AD is perpendicular to BC and D divides BC in the ratio 1: 3.**

Prove that : 2AC^{2} = 2AB^{2} + BC^{2}

**In triangle ABC, AB = AC and BD is perpendicular to AC.**

Prove that: BD^{2} - CD^{2} = 2CD × AD.

**In triangle ABC, angle A = 90 ^{o}, CA = AB and D is the point on AB produced.**

Prove that DC

^{2}- BD

^{2}= 2AB.AD.

**In an isosceles triangle ABC; AB = AC and D is the point on BC produced.**

Prove that: AD^{2} = AC^{2} + BD.CD.

**In figure AB = BC and AD is perpendicular to CD.**

Prove that: AC^{2} = 2BC. DC.

**In the following figure, OP, OQ, and OR are drawn perpendiculars to the sides BC, CA and AB respectively of triangle ABC.**

Prove that: AR^{2} + BP^{2} + CQ^{2} = AQ^{2} + CP^{2} + BR^{2}

If P and Q are the points on side CA and CB respectively of ΔABC, right angled at C, prove that (AQ^{2} + BP^{2}) = (AB^{2} + PQ^{2})

Find the length of diagonal of the square whose side is 8 cm.

Triangle XYZ is right-angled at vertex Z. Calculate the length of YZ, if XY = 13 cm and XZ = 12 cm.

Triangle PQR is right-angled at vertex R. Calculate the length of PR, if: PQ = 34 cm and QR = 33.6 cm.

**The sides of a certain triangle is given below. Find, which of them is right-triangle**

16 cm, 20 cm, and 12 cm

**The sides of a certain triangle is given below. Find, which of them is right-triangle**

6 m, 9 m, and 13 m

In the given figure, angle ACP = ∠BDP = 90°, AC = 12 m, BD = 9 m and PA= PB = 15 m. Find:**(i)** CP**(ii)** PD**(iii)** CD

In triangle PQR, angle Q = 90°, find: PR, if PQ = 8 cm and QR = 6 cm

In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm

Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm

In the given figure, angle ADB = 90°, AC = AB = 26 cm and BD = DC. If the length of AD = 24 cm; find the length of BC.

In the given figure, AD = 13 cm, BC = 12 cm, AB = 3 cm and angle ACD = angle ABC = 90°. Find the length of DC.

In the figure below, find the value of 'x'.

In the right-angled ∆PQR, ∠ P = 90°. If l(PQ) = 24 cm and l(PR) = 10 cm, find the length of seg QR.

Find the Pythagorean triplet from among the following set of numbers.

2, 4, 5

Find the Pythagorean triplet from among the following set of numbers.

4, 5, 6

Find the Pythagorean triplet from among the following set of numbers.

4, 7, 8

The sides of the triangle are given below. Find out which one is the right-angled triangle?

8, 15, 17

The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 12, 15

The sides of the triangle are given below. Find out which one is the right-angled triangle?

1.5, 1.6, 1.7

The sides of the triangle are given below. Find out which one is the right-angled triangle?

40, 20, 30

From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.

Each side of rhombus is 10cm. If one of its diagonals is 16cm, find the length of the other diagonals.

In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB^{2} + AC^{2} = 2AD^{2 }+ `(1)/(2)"BC"^2`

In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AC^{2} - AB^{2 }= 2BC x ED

AD is perpendicular to the side BC of an equilateral ΔABC. Prove that 4AD^{2} = 3AB^{2}.

In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.

Prove that: 9BP^{2} = 9BC^{2} + 4AC^{2}

In the given figure, PQ = `"RS"/(3)` = 8cm, 3ST = 4QT = 48cm.

SHow that ∠RTP = 90°.

In the given figure. PQ = PS, P =R = 90°. RS = 20 cm and QR = 21 cm. Find the length of PQ correct to two decimal places.

A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?

There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?

To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?

The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ^{2} = 2PR^{2} + QR^{2}

Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of `(20 "km")/"hr"` and the second train travels at `(30 "km")/"hr"`. After 2 hours, what is the distance between them?

If ‘l‘ and ‘m’ are the legs and ‘n’ is the hypotenuse of a right angled triangle then, l^{2} = ________

In a right angled triangle, the hypotenuse is the greatest side

Find the unknown side in the following triangles

Find the unknown side in the following triangles

An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height

Find the distance between the helicopter and the ship

The hypotenuse of a right angled triangle of sides 12 cm and 16 cm is __________

Find the length of the support cable required to support the tower with the floor

Rithika buys an LED TV which has a 25 inches screen. If its height is 7 inches, how wide is the screen? Her TV cabinet is 20 inches wide. Will the TV fit into the cabinet? Give reason

In the figure, find AR

**Choose the correct alternative:**

If length of sides of a triangle are a, b, c and a^{2} + b^{2} = c^{2}, then which type of triangle it is?

From given figure, In ∆ABC, If AC = 12 cm. then AB =?

Activity: From given figure, In ∆ABC, ∠ABC = 90°, ∠ACB = 30°

∴ ∠BAC = `square`

∴ ∆ABC is 30° – 60° – 90° triangle

∴ In ∆ABC by property of 30° – 60° – 90° triangle.

∴ AB = `1/2` AC and `square` = `sqrt(3)/2` AC

∴ `square` = `1/2 xx 12` and BC = `sqrt(3)/2 xx 12`

∴ `square` = 6 and BC = `6sqrt(3)`

Foot of a 10 m long ladder leaning against a vertical wall is 6 m away from the base of the wall. Find the height of the point on the wall where the top of the ladder reaches.

A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.

For going to a city B from city A, there is a route via city C such that AC ⊥ CB, AC = 2x km and CB = 2(x + 7) km. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.

In an isosceles triangle PQR, the length of equal sides PQ and PR is 13 cm and base QR is 10 cm. Find the length of perpendicular bisector drawn from vertex P to side QR.

In the adjoining figure, a tangent is drawn to a circle of radius 4 cm and centre C, at the point S. Find the length of the tangent ST, if CT = 10 cm.

In an equilateral triangle PQR, prove that PS^{2} = 3(QS)^{2}.

Lengths of sides of a triangle are 3 cm, 4 cm and 5 cm. The triangle is ______.

Two trees 7 m and 4 m high stand upright on a ground. If their bases (roots) are 4 m apart, then the distance between their tops is ______.

In a right-angled triangle ABC, if angle B = 90°, then which of the following is true?

If the areas of two circles are the same, they are congruent.

Two squares having same perimeter are congruent.

Two circles having same circumference are congruent.

If the hypotenuse of one right triangle is equal to the hypotenuse of another right triangle, then the triangles are congruent.

Jiya walks 6 km due east and then 8 km due north. How far is she from her starting place?

Jayanti takes shortest route to her home by walking diagonally across a rectangular park. The park measures 60 metres × 80 metres. How much shorter is the route across the park than the route around its edges?

The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. Find the length of the ladder.