CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

If the Vectors ^ I − 2 X ^ J + 3 Y ^ K and ^ I + 2 X ^ J − 3 Y ^ K Are Perpendicular, Then the Locus of (X, Y) is - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

If the vectors \[\hat{i} - 2x \hat{j} + 3y \hat{k} \text{ and } \hat{i} + 2x \hat{j} - 3y \hat{k}\] are perpendicular, then the locus of (xy) is

  •  a circle 

  • an ellipse 

  • a hyperbola 

  •  None of these 

Solution

 an ellipse 

\[\text{ Let }, \vec{a} = \hat{ i } - 2x \hat{j} + 3y \hat{k} \text{ and } \vec{b} = \hat{i} + 2x \hat{j} - 3y \hat{k} \]
\[\text{ It is given that the vectors are perpendicular. So, their dot product is zero }.\]
\[ \vec{a} . \vec{b} = 0\]
\[ \Rightarrow \left( \hat{i} - 2x \hat{j} + 3y \hat{k} \right) . \left( \hat{i} + 2x \hat{j} - 3y \hat{k} \right) = 0\]
\[ \Rightarrow 1 - 4 x^2 - 9 y^2 = 0\]
\[ \Rightarrow 4 x^2 + 9 y^2 = 1\]
\[\text{ Dividing both sides by } 36, \text{ we get }\]
\[\frac{x^2}{9} + \frac{y^2}{4} = 1\]
\[\text{ This is an ellipse }.\]

  Is there an error in this question or solution?

Video TutorialsVIEW ALL [2]

Solution If the Vectors ^ I − 2 X ^ J + 3 Y ^ K and ^ I + 2 X ^ J − 3 Y ^ K Are Perpendicular, Then the Locus of (X, Y) is Concept: Introduction of Vector.
S
View in app×