Advertisement Remove all ads

Integrate the following w.r.t. x: 2x2-1x4+9x2+20 - Mathematics and Statistics

Sum

Integrate the following w.r.t. x: `(2x^2 - 1)/(x^4 + 9x^2 + 20)`

Advertisement Remove all ads

Solution

Let I = `int (2x^2 - 1)/(x^4 + 9x^2 + 20).dx`

Consider, `(2x^2 - 1)/(x^4 + 9x^2 + 20)`

For finding partial fractions only, put x2 = t.

∴ `(2x^2 - 1)/(x^4 + 9x^2 + 20) = t/((t - 1)(t - 2)(t + 3)`

= `"A"/(t + 1) + "B"/(t - 2) + "C"/(t + 3)`             ...(Say)

∴ t = A(t – 2)(t + 3) + B(t + 1)(t + 3) + C(t + 1)(t –2)
Put t + 1 = 0, i.e. t = – 1, we get
–1 = A(– 3)(2) + B(0)(2) + C(0)(– 3)

∴ – 1 = – 6A

∴ A = `(1)/(6)`
Put t – 2 = 0, i.e. t = 2, we get
2 = A(0)(5) + B(3)(5) + C(3)(0)

∴ 2 = 15B

∴ B = `(2)/(15)`
Put t + 3 = 0, i.e. t = – 3, we get
– 3 = A(–  5)(0) + B(–  2)(0) + C(– 2)(–  5)

–3 = 10C

∴ C = `-(3)/(10)`

∴ `t/((t + 1)(t - 2)(t + 3)) = ((1/6))/(t + 1) + ((2/15))/(x^2 - 2) + (((-3)/10))/(x^2 + 3)`

∴ `x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) = ((1/6))/(x^2 + 1) + ((2/15))/(x^2 - 2) + (((-3)/10))/(x^2 + 3)`

∴ I = `int [((1/6))/(x^2 + 1) + ((2/15))/(x^2 - 2) + (((-3)/10))/(x^2 + 3)].dx`

= `(1)/(6) int (1)/(1 + x^2).dx + (2)/(15) int (1)/(x^2 - (sqrt(2))^2).dx - (3)/(10) int (1)/(x^2 + (sqrt(3))^2).dx`

= `(1)/(6) tan^-1 x + (2)/(15) xx (1)/(2sqrt(2))log|(x - sqrt(2))/(x + sqrt(2))| - (3)/(10) xx (1)/sqrt(3)tan^-1(x/sqrt(3)) + c`

= `(11)/sqrt(5)tan^-1 (x/sqrt(5)) - (9)/(2)tan^-1(x/2) + c`.

  Is there an error in this question or solution?
Advertisement Remove all ads

APPEARS IN

Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×