Integrate the following functions w.r.t. x : ∫13-2cos2x.dx - Mathematics and Statistics

Advertisements
Advertisements
Sum

Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`

Advertisements

Solution

Let I = `int (1)/(3 - 2cos 2x).dx`

Put tan x = t
∴ x = tan–1 t

∴ dx = `dt/(1 + t^2) and cos2x = (1 - t^2)/(1 + t^2)`

∴ I = `int (1)/(3 - 2((1 - t^2)/(1 + t^2))).dt/(1 + t^2)`

= `int (1 + t^2)/(3 + 3t^2 - 2 + 2t^2).dt/(1 + t^2)`

= `int (1)/(1 + 5t^2)dt`

= `(1)/(5) int (1)/((1 /sqrt(5))^2 + t^2)dt`

= `(1)/(5) xx (1)/((1/sqrt(5)))tan^-1(t/(1/sqrt(5))) + c`

= `(1)/sqrt(5)tan^-1(sqrt(5)tanx) + c`.

  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (B) [Page 123]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) 12th Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Exercise 3.2 (B) | Q 2.5 | Page 123

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Evaluate :`intxlogxdx`


Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`(2x)/(1 + x^2)`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

(4x + 2) `sqrt(x^2 + x +1)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`1/(1 - tan x)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


Solve: dy/dx = cos(x + y)


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of

\[\int\frac{1 + \log x}{3 + x \log x} \text{ dx }\] .

Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int x \sin^3 x\ dx\]

`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Integrate the following w.r.t. x : `3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : x9.sec2(x10)


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following : `int (logx)2.dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives : 

`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


State whether the following statement is True or False.

If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 1/sqrt((x - 3)(x - 2))` dx = ________________


`int x^2/sqrt(1 - x^6)` dx = ________________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int (sin4x)/(cos 2x) "d"x`


`int logx/x  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int x^x (1 + logx)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int cot^2x  "d"x`


`int x/(x + 2)  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int sin^-1 x`dx = ?


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int dx/(1 + e^-x)` = ______


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int (cos x)/(1 - sin x) "dx" =` ______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


`int cos^3x  dx` = ______.


Write `int cotx  dx`.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


`int secx/(secx - tanx)dx` equals ______.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate `int1/(x(x - 1))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


`int x^3 e^(x^2) dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


The value of `int dx/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate `int 1/(x(x-1))dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications



      Forgot password?
Use app×