Integrate the Functions (X Cos^(-1) X)/Sqrt(1-x^2) - Mathematics

Advertisements
Advertisements

Integrate the functions `(x cos^(-1) x)/sqrt(1-x^2)`

Advertisements

Solution

  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 11 | Page 327

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate : sec3 x w. r. t. x.


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the functions x sin 3x


Integrate the functions x logx


Integrate the functions x log 2x


Integrate the functions x sin– 1x


Integrate the functions x cos–1 x


Integrate the functions x sec2 x


Integrate the functions tan–1x


Integrate the functions (x2 + 1) log x


Integrate the functions `(xe^x)/(1+x)^2`


Integrate the functions `((x- 3)e^x)/(x - 1)^3`


Integrate the functions e2x sin x


Integrate the functions `sin^(-1) ((2x)/(1+x^2))`


Choose the correct answer `int e^x sec x (1 +   tan x) dx` equals

(A) ex cos x + C

(B) ex sec x + C

(C) ex sin x + C

(D) ex tan x + C


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x tan^-1 x .dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int x.sin 2x. cos 5x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : `e^(sin^-1x).[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


`int (sinx)/(1 + sin x)  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int 1/x  "d"x` = ______ + c


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int(logx)^2dx` equals ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int1/(x+sqrt(x))  dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int logx  dx = x(1+logx)+c`


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`int e^(logcosx)dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate `int tan^-1x  dx`


Evaluate: `int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Share
Notifications



      Forgot password?
Use app×