Integrate the Functions Cot X Log Sin X - Mathematics

Advertisements
Advertisements

Integrate the functions cot x log sin x

Advertisements

Solution

Let log sin x = t

  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.2 [Page 305]

APPEARS IN

NCERT Mathematics Class 12
Chapter 7 Integrals
Exercise 7.2 | Q 29 | Page 305

RELATED QUESTIONS

Evaluate :`intxlogxdx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find : `int(x+3)sqrt(3-4x-x^2dx)`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions in `1/(1 - tan x)`


Integrate the functions in `(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int 1/(x(x-1)) dx`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

\[\int x \sin^3 x\ dx\]

 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : x9.sec2(x10)


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/(25 - 9x^2).dx`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


`int logx/(log ex)^2*dx` = ______.


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


integrate the following with respect to the respective variable : `x^2/(x + 1)`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/("x"("x"^6 + 1))` dx


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: ∫ |x| dx if x < 0


`int 1/(cos x - sin x)` dx = _______________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int (log x)/(log ex)^2` dx = _________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int sqrt(1 + sin2x)  "d"x`


`int (sin4x)/(cos 2x) "d"x`


`int x^x (1 + logx)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int(log(logx))/x  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int dx/(1 + e^-x)` = ______


`int(5x + 2)/(3x - 4) dx` = ______


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int sec^6 x tan x   "d"x` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


`int secx/(secx - tanx)dx` equals ______.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate `int 1/("x"("x" - 1)) "dx"`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


`int x^3 e^(x^2) dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int sin^2(x/2)dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Share
Notifications



      Forgot password?
Use app×