Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Integrate the following w.r.t. x `(x^3-3x+1)/sqrt(1-x^2)`
Advertisement Remove all ads
Solution
`(x^3-3x+1)/sqrt(1-x^2)=−(x^2+3x−1+1−1)/sqrt(1−x2)`
`=−(1-x^2+3x−2)/sqrt(1−x2)`
`=(−1−x^2)/sqrt(1−x^2)−(3x−2)/sqrt(1−x^2)`
`=−sqrt(1−x2)−(3x−2)/sqrt(1−x2)`
`=>int(x^3-3x+1)/sqrt(1-x^2)dx`
`=int(−sqrt(1−x2)−(3x−2)/sqrt(1−x2))dx`
`=−intsqrt(1−x2)dx−int(3x−2)/sqrt(1−x2)dx`
`=−intsqrt(1−x2)dx−int(3x)/sqrt(1−x2)dx-2int(1)/sqrt(1−x2)dx`
`=−intsqrt(1−x2)dx−int(3x)/sqrt(t)dt-2int(1)/sqrt(1−x2)dx (Here, t=1−x2.)`
`=−[1/2xsqrt(1−x2)+1/2sin^(−1) x]+3/2xx2sqrtt−2cos^(−1) x+C `
`= −1/2xsqrt(1−x2)−1/2sin^(−1) x+3sqrt(1−x2)−2cos^(−1) x+C`
Concept: Evaluation of Simple Integrals of the Following Types and Problems
Is there an error in this question or solution?