HSC Commerce 12th Board ExamMaharashtra State Board
Account
It's free!

User


Login
Create free account


      Forgot password?
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution - Evaluate : ∫(1+logx)/(x(2+logx)(3+logx))dx - HSC Commerce 12th Board Exam - Mathematics and Statistics

Question

Evaluate : `int (1+logx)/(x(2+logx)(3+logx))dx`

Solution

Let `I=int (1+logx)/(x(2+logx)(3+logx))dx`

Put 

`logx=t`

`1/xdx=dt`

`I=int(1+t)/((2+t)(3+t))dt`

consider 

`(1+t)/((2+t)(3+t))=A/(2+t)+B/(3+t)`

`(1+t)=A(3+t)+B(2+t)`

A=-1,B=2

`(1+t)/((2+t)(3+t))=-1/(2+t)+2/(3+t)`

`I=int-1/(2+t)dt+int2/(3+t)dt`

`=-log|(2+t)|+2log|(3+t)|+c`

`=log[|((3+t)^2)/(2+t)|] +c`

`=log[|(3+logx)^2/(2+logx)|]+C`

Is there an error in this question or solution?

APPEARS IN

 2014-2015 (March) (with solutions)
Question 3.2.1 | 4 marks

Related QuestionsVIEW ALL [1]

Video TutorialsVIEW ALL [1]

Solution for question: Evaluate : ∫(1+logx)/(x(2+logx)(3+logx))dx concept: null - Methods of Integration. For the courses HSC Commerce, HSC Commerce (Marketing and Salesmanship)
S