Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

# Solution for The Function F ( X ) = X 1 + | X | is (A) Strictly Increasing (B) Strictly Decreasing (C) Neither Increasing Nor Decreasing (D) None of Thes - CBSE (Science) Class 12 - Mathematics

Login
Create free account

Forgot password?
ConceptIncreasing and Decreasing Functions

#### Question

The function $f\left( x \right) = \frac{x}{1 + \left| x \right|}$ is

(a) strictly increasing
(b) strictly decreasing
(c) neither increasing nor decreasing
(d) none of these

#### Solution

(a)  strictly increasing

$f\left( x \right) = \frac{x}{1 + \left| x \right|}$

$\text { Case 1: When }x > 0, \left| x \right| = x$

$f\left( x \right) = \frac{x}{1 + \left| x \right|}$

$= \frac{x}{1 + x}$

$\Rightarrow f'\left( x \right) = \frac{\left( 1 + x \right)1 - x\left( 1 \right)}{\left( 1 + x \right)^2}$

$= \frac{1}{\left( 1 + x \right)^2} > 0, \forall x \in R$

$\text { So,f }\left( x \right) \text { is strictly increasing when }x> 0.$

$\text { Case 2: When }x < 0, \left| x \right| = - x$

$f\left( x \right) = \frac{x}{1 + \left| x \right|}$

$= \frac{x}{1 - x}$

$\Rightarrow f'\left( x \right) = \frac{\left( 1 - x \right)1 - x\left( - 1 \right)}{\left( 1 - x \right)^2}$

$= \frac{1}{\left( 1 - x \right)^2} > 0, \forall x \in R$

$\text { So,f }\left( x \right) \text { is strictly increasing when }x <0.$

$\text { Thus,f }\left( x \right) \text { is strictly increasing on R } .$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [3]

Solution The Function F ( X ) = X 1 + | X | is (A) Strictly Increasing (B) Strictly Decreasing (C) Neither Increasing Nor Decreasing (D) None of Thes Concept: Increasing and Decreasing Functions.
S