Share

# Show that Y = Log(1+X) - (2x)/(2+X), X> - 1, Is an Increasing Function Of X Throughout Its Domain. - CBSE (Commerce) Class 12 - Mathematics

ConceptIncreasing and Decreasing Functions

#### Question

Show that y = log(1+x) - (2x)/(2+x), x> -  1, is an increasing function of x throughout its domain.

#### Solution

We have,

y = log(1+x) - (2x)/(2+x)

∴dydx=11+x-(2+x)(2)-2x(1)(2+x)2=11+x-4(2+x)2=x2(1+x)(2+x)2
Now, dydx=0
⇒x2(1+x)(2+x)2=0⇒x2=0      [(2+x)≠0 as x>-1]⇒x=0

Since > −1, point = 0 divides the domain (−1, ∞) in two disjoint intervals i.e., −1 < x < 0 and x > 0.

When −1 < < 0, we have:
x<0⇒x2>0x>-1⇒(2+x)>0⇒(2+x2)>0
∴ y'=x2(1+x)(2+x)2>0

Also, when x > 0:
x>0⇒x2>0, (2+x)2>0
∴ y'=x2(1+x)(2+x)2>0

Hence, function f is increasing throughout this domain

Is there an error in this question or solution?

#### APPEARS IN

NCERT Solution for Mathematics Textbook for Class 12 (2018 to Current)
Chapter 6: Application of Derivatives
Q: 7 | Page no. 205

#### Video TutorialsVIEW ALL 

Solution Show that Y = Log(1+X) - (2x)/(2+X), X> - 1, Is an Increasing Function Of X Throughout Its Domain. Concept: Increasing and Decreasing Functions.
S