CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Show that F(X) = Sin X − Cos X is an Increasing Function on (−π/4, π/4) ? - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?

Solution

\[f\left( x \right) = \sin x - \cos x\]

\[f'\left( x \right) = \cos x + \sin x\]

\[ = \cos x\left( 1 + \frac{\sin x}{\cos x} \right)\]

\[ = \cos x\left( 1 + \cot x \right)\]

\[\text { Here, } \]

\[\frac{- \pi}{4} < x < \frac{\pi}{4}\]

\[ \Rightarrow \cos x > 0 . . . \left( 1 \right)\]

\[\text { Also, } \]

\[\frac{- \pi}{4} < x < \frac{\pi}{4} \Rightarrow - 1 < \cot x < 1\]

\[ \Rightarrow 0 < 1 + \cot x < 2\]

\[ \Rightarrow 1 + \cot x > 0 . . . \left( 2 \right)\]

\[\cos x\left( 1 + \cot x \right) > 0, \forall x \in \left( \frac{- \pi}{4}, \frac{\pi}{4} \right) \left[ \text { From eqs }. (1) \text { and }(2) \right]\]

\[ \Rightarrow f'\left( x \right) > 0, \forall x \in \left( \frac{- \pi}{4}, \frac{\pi}{4} \right)\]

\[\text { So,}f\left( x \right) \text { is increasing on }\left( \frac{- \pi}{4}, \frac{\pi}{4} \right).\]

  Is there an error in this question or solution?
Solution Show that F(X) = Sin X − Cos X is an Increasing Function on (−π/4, π/4) ? Concept: Increasing and Decreasing Functions.
S
View in app×