CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Function F(X) = Loga X is Increasing on R, If (A) 0 < a < 1 (B) a > 1 (C) a < 1 (D) a > 0 - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Function f(x) = loga x is increasing on R, if
(a) 0 < a < 1
(b) a > 1
(c) a < 1
(d) a > 0

Solution

(b) a > 1

\[f\left( x \right) = \log_a x = \frac{\log x}{\log a}\]

\[f'\left( x \right) = \frac{1}{x \log a}\]

\[\text { Given:f(x) is increasing on }\hspace{0.167em}R.\]

\[ \Rightarrow f'\left( x \right) > 0, \forall x \in R\]

\[ \Rightarrow \frac{1}{x \log a} > 0, \forall x \in R\]

\[ \Rightarrow a > 1\]

  Is there an error in this question or solution?
Solution for question: Function F(X) = Loga X is Increasing on R, If (A) 0 < a < 1 (B) a > 1 (C) a < 1 (D) a > 0 concept: Increasing and Decreasing Functions. For the courses CBSE (Science), CBSE (Commerce), CBSE (Arts), PUC Karnataka Science
S
View in app×