Share

Books Shortlist

# Solution for Find the Interval in Which the Following Function Are Increasing Or Decreasing F ( X ) = 3 2 X 4 − 4 X 3 − 45 X 2 + 51 ? - CBSE (Science) Class 12 - Mathematics

ConceptIncreasing and Decreasing Functions

#### Question

Find the interval in which the following function are increasing or decreasing $f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51$ ?

#### Solution

$\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.$

$\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .$

$f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51$

$f'\left( x \right) = 6 x^3 - 12 x^2 - 90x$

$= 6x\left( x^2 - 2x - 15 \right)$

$= 6x\left( x - 5 \right)\left( x + 3 \right)$

$\text { Here, } x = - 3, x = 0 \text { and }x = 5 \text { are the critical points }.$

$\text { The possible intervals are }\left( - \infty , - 3 \right),\left( - 3, 0 \right),\left( 0, 5 \right)\text { and }\left( 5, \infty \right). .....(1)$

$\text { Forf(x) to be increasing, we must have }$

$f'\left( x \right) > 0$

$\Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) > 0 \left[\text { Since,} 6 > 0, 6x\left( x - 5 \right)\left( x + 3 \right) > 0 \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) > 0 \right]$

$\Rightarrow x\left( x - 5 \right)\left( x + 3 \right) > 0$

$\Rightarrow x \in \left( - 3, 0 \right) \cup \left( 5, \infty \right) \left[ \text { From eq.} (1) \right]$

$\text { So,f(x)is increasing on x } \in \left( - 3, 0 \right) \cup \left( 5, \infty \right) .$

$\text { Forf(x) to be decreasing, we must have }$

$f'\left( x \right) < 0$

$\Rightarrow 6x\left( x - 5 \right)\left( x + 3 \right) < 0 \left[ \text { Since }6 > 0, 6x\left( x - 5 \right)\left( x + 3 \right) < 0 \Rightarrow x\left( x - 5 \right)\left( x + 3 \right) < 0 \right]$

$\Rightarrow x\left( x - 5 \right)\left( x + 3 \right) < 0$

$\Rightarrow x \in \left( - \infty , - 3 \right) \cup \left( 0, 5 \right) \left[ \text { From eq.} (1) \right]$

$\text { So,f(x)is decreasing on x } \in \left( - \infty , - 3 \right) \cup \left( 0, 5 \right) .$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [3]

Solution Find the Interval in Which the Following Function Are Increasing Or Decreasing F ( X ) = 3 2 X 4 − 4 X 3 − 45 X 2 + 51 ? Concept: Increasing and Decreasing Functions.
S