CBSE (Science) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for Find the Interval in Which the Following Function Are Increasing Or Decreasing F ( X ) = 3 10 X 4 − 4 5 X 3 − 3 X 2 + 36 5 X + 11 ? - CBSE (Science) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?

Solution

\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]

\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]

\[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\]

\[ = \frac{3 x^4 - 8 x^3 - 30 x^2 + 72x + 110}{10}\]

\[f'\left( x \right) = \frac{12 x^3 - 24 x^2 - 60x + 72}{10}\]

\[ = \frac{12}{10}\left( x^3 - 2 x^2 - 5x + 6 \right)\]

\[ = \frac{\left( x - 1 \right)\left( x^2 - x - 6 \right)}{10}\]

\[ = \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right)\]

\[\text { Here }, 1, 2 \text { and } 3 \text { are the critical points } . \]

\[\text { The possible intervals are }\left( - \infty - 2 \right),\left( - 2, 1 \right),\left( 1, 3 \right)\text { and }\left( 3, \infty \right).\]

\[\text { For }f(x)\text {  to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0\]

\[ \Rightarrow x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right)\]

\[\text { So },f(x)\text { is increasing on } x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right) . \]

\[\text { For }f(x)\text {  to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0\]

\[ \Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0\]

\[ \Rightarrow x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right) \]

\[\text { So,}f(x)\text { is decreasing on } x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right) .\]

  Is there an error in this question or solution?
Solution Find the Interval in Which the Following Function Are Increasing Or Decreasing F ( X ) = 3 10 X 4 − 4 5 X 3 − 3 X 2 + 36 5 X + 11 ? Concept: Increasing and Decreasing Functions.
S
View in app×