Share

Books Shortlist

# Solution for Find the Interval in Which the Following Function Are Increasing Or Decreasing F ( X ) = 3 10 X 4 − 4 5 X 3 − 3 X 2 + 36 5 X + 11 ? - CBSE (Science) Class 12 - Mathematics

ConceptIncreasing and Decreasing Functions

#### Question

Find the interval in which the following function are increasing or decreasing $f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11$ ?

#### Solution

$\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.$

$\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .$

$f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11$

$= \frac{3 x^4 - 8 x^3 - 30 x^2 + 72x + 110}{10}$

$f'\left( x \right) = \frac{12 x^3 - 24 x^2 - 60x + 72}{10}$

$= \frac{12}{10}\left( x^3 - 2 x^2 - 5x + 6 \right)$

$= \frac{\left( x - 1 \right)\left( x^2 - x - 6 \right)}{10}$

$= \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right)$

$\text { Here }, 1, 2 \text { and } 3 \text { are the critical points } .$

$\text { The possible intervals are }\left( - \infty - 2 \right),\left( - 2, 1 \right),\left( 1, 3 \right)\text { and }\left( 3, \infty \right).$

$\text { For }f(x)\text { to be increasing, we must have }$

$f'\left( x \right) > 0$

$\Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0$

$\Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) > 0$

$\Rightarrow x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right)$

$\text { So },f(x)\text { is increasing on } x \in \left( - 2, 1 \right) \cup \left( 3, \infty \right) .$

$\text { For }f(x)\text { to be decreasing, we must have }$

$f'\left( x \right) < 0$

$\Rightarrow \frac{12}{10}\left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0$

$\Rightarrow \left( x - 1 \right)\left( x + 2 \right)\left( x - 3 \right) < 0$

$\Rightarrow x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right)$

$\text { So,}f(x)\text { is decreasing on } x \in \left( - \infty - 2 \right) \cup \left( 1, 3 \right) .$

Is there an error in this question or solution?

#### Video TutorialsVIEW ALL [3]

Solution Find the Interval in Which the Following Function Are Increasing Or Decreasing F ( X ) = 3 10 X 4 − 4 5 X 3 − 3 X 2 + 36 5 X + 11 ? Concept: Increasing and Decreasing Functions.
S