CBSE (Commerce) Class 12CBSE
Share
Notifications

View all notifications
Books Shortlist
Your shortlist is empty

Solution for F(X) = 2x − Tan−1 X − Log { X + √ X 2 + 1 } is Monotonically Increasing When (A) X > 0 (B) X < 0 (C) X ∈ R (D) X ∈ R − {0} - CBSE (Commerce) Class 12 - Mathematics

Login
Create free account


      Forgot password?

Question

f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

(a) x > 0
(b) x < 0
(c) x ∈ R
(d) x ∈ R − {0}

Solution

(c) x ∈ R

\[\text { Given }: f\left( x \right) = 2x - \tan^{- 1} x - \log \left( x + \sqrt{x^2 + 1} \right)\]

\[f'\left( x \right) = 2 - \frac{1}{1 + x^2} - \frac{1}{x + \sqrt{x^2 + 1}}\left( 1 + \frac{1}{2\sqrt{x^2 + 1}} . 2x \right)\]

\[ = 2 - \frac{1}{1 + x^2} - \frac{1}{x + \sqrt{x^2 + 1}}\left( 1 + \frac{x}{\sqrt{x^2 + 1}} \right)\]

\[ = 2 - \frac{1}{1 + x^2} - \frac{1}{x + \sqrt{x^2 + 1}}\left( \frac{x + \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}} \right)\]

\[ = 2 - \frac{1}{1 + x^2} - \frac{1}{\sqrt{x^2 + 1}}\]

\[ = \frac{2 + 2 x^2 - 1 - \sqrt{x^2 + 1}}{1 + x^2}\]

\[ = \frac{1 + 2 x^2 - \sqrt{x^2 + 1}}{1 + x^2}\]

\[\text { For f(x) to be monotonically increasing,} f'\left( x \right) > 0 . \]

\[ \Rightarrow \frac{1 + 2 x^2 - \sqrt{x^2 + 1}}{1 + x^2} > 0 \]

\[ \Rightarrow 1 + 2 x^2 - \sqrt{x^2 + 1} > 0 \left[ \because \left( 1 + x^2 \right) > 0 \right]\]

\[ \Rightarrow 1 + 2 x^2 > \sqrt{x^2 + 1}\]

\[ \Rightarrow \left( 1 + 2 x^2 \right)^2 > x^2 + 1\]

\[ \Rightarrow 1 + 4 x^4 + 4 x^2 > x^2 + 1\]

\[ \Rightarrow 4 x^4 + 3 x^2 > 0\]

\[\text { Thus, f(x) is monotonically increasing for x } \in R . \]

  Is there an error in this question or solution?
Solution F(X) = 2x − Tan−1 X − Log { X + √ X 2 + 1 } is Monotonically Increasing When (A) X > 0 (B) X < 0 (C) X ∈ R (D) X ∈ R − {0} Concept: Increasing and Decreasing Functions.
S
View in app×