###### Advertisements

###### Advertisements

In triangle PQR, angle Q = 90°, find: PR, if PQ = 8 cm and QR = 6 cm

###### Advertisements

#### Solution

**Given:**

PQ = 8 cm

QR = 6 cm

PR =?

∠PQR = 90°

According to Pythagoras Theorem,

(PR)^{2} = (PQ)^{2} + (QR)^{2}PR^{2} = 8^{2} + 6^{2}PR^{2} = 64 + 36

PR^{2} = 100

∴ PR = `sqrt100` = 10 cm

#### APPEARS IN

#### RELATED QUESTIONS

In a right triangle ABC, right-angled at B, BC = 12 cm and AB = 5 cm. The radius of the circle inscribed in the triangle (in cm) is

(A) 4

(B) 3

(C) 2

(D) 1

Two towers of heights 10 m and 30 m stand on a plane ground. If the distance between their feet is 15 m, find the distance between their tops

In Fig., ∆ABC is an obtuse triangle, obtuse angled at B. If AD ⊥ CB, prove that AC^{2} = AB^{2} + BC^{2} + 2BC × BD

From a point O in the interior of a ∆ABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove

that :

`(i) AF^2 + BD^2 + CE^2 = OA^2 + OB^2 + OC^2 – OD^2 – OE^2 – OF^2`

`(ii) AF^2 + BD^2 + CE^2 = AE^2 + CD^2 + BF^2`

ABC is a right triangle right-angled at C. Let BC = a, CA = b, AB = c and let p be the length of perpendicular from C on AB, prove that

(i) cp = ab

`(ii) 1/p^2=1/a^2+1/b^2`

Sides of triangle are given below. Determine it is a right triangle or not? In case of a right triangle, write the length of its hypotenuse. 7 cm, 24 cm, 25 cm

In Figure, ABD is a triangle right angled at A and AC ⊥ BD. Show that AD^{2} = BD × CD

Which of the following can be the sides of a right triangle?

2.5 cm, 6.5 cm, 6 cm

In the case of right-angled triangles, identify the right angles.

Which of the following can be the sides of a right triangle?

2 cm, 2 cm, 5 cm

In the case of right-angled triangles, identify the right angles.

Which of the following can be the sides of a right triangle?

1.5 cm, 2 cm, 2.5 cm

In the case of right-angled triangles, identify the right angles.

Prove that, in a right-angled triangle, the square of the hypotenuse is equal to the sum of the square of remaining two sides

**Identify, with reason, if the following is a Pythagorean triplet.**(24, 70, 74)

**Identify, with reason, if the following is a Pythagorean triplet.**(10, 24, 27)

For finding AB and BC with the help of information given in the figure, complete following activity.

AB = BC ..........

\[\therefore \angle BAC = \]

\[ \therefore AB = BC =\] \[\times AC\]

\[ =\] \[\times \sqrt{8}\]

\[ =\] \[\times 2\sqrt{2}\]

=

Walls of two buildings on either side of a street are parellel to each other. A ladder 5.8 m long is placed on the street such that its top just reaches the window of a building at the height of 4 m. On turning the ladder over to the other side of the street , its top touches the window of the other building at a height 4.2 m. Find the width of the street.

In ∆ABC, AB = 10, AC = 7, BC = 9, then find the length of the median drawn from point C to side AB.

In the given figure, point T is in the interior of rectangle PQRS, Prove that, TS^{2 }+ TQ^{2 }= TP^{2 }+ TR^{2 }(As shown in the figure, draw seg AB || side SR and A-T-B)

Some question and their alternative answer are given. Select the correct alternative.

If a, b, and c are sides of a triangle and a^{2 }+ b^{2 }= c^{2}, name the type of triangle.

In ∆ABC, ∠BAC = 90°, seg BL and seg CM are medians of ∆ABC. Then prove that:

4(BL^{2 }+ CM^{2}) = 5 BC^{2}

^{}

In ∆ABC, seg AD ⊥ seg BC, DB = 3CD.

Prove that: 2AB^{2 }= 2AC^{2 }+ BC^{2}

^{}

Digonals of parallelogram WXYZ intersect at point O. If OY =5, find WY.

**A ladder 13 m long rests against a vertical wall. If the foot of the ladder is 5 m from the foot of the wall, find the distance of the other end of the ladder from the ground.**

**A man goes 40 m due north and then 50 m due west. Find his distance from the starting point.**

**In the given figure, ∠B = 90 ^{°}, XY || BC, AB = 12 cm, AY = 8cm and AX : XB = 1 : 2 = AY : YC.**

Find the lengths of AC and BC.

**Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m;**

find the distance between their tips.

If the sides of the triangle are in the ratio 1: `sqrt2`: 1, show that is a right-angled triangle.

**In triangle ABC, AB = AC = x, BC = 10 cm and the area of the triangle is 60 cm ^{2}.**

Find x.

**In the figure, given below, AD ⊥ BC. **Prove that: c

^{2}= a

^{2}+ b

^{2}- 2ax.

**In an isosceles triangle ABC; AB = AC and D is the point on BC produced.**

Prove that: AD^{2} = AC^{2} + BD.CD.

**In figure AB = BC and AD is perpendicular to CD.**

Prove that: AC^{2} = 2BC. DC.

If the angles of a triangle are 30°, 60°, and 90°, then shown that the side opposite to 30° is half of the hypotenuse, and the side opposite to 60° is `sqrt(3)/2` times of the hypotenuse.

Find the side of the square whose diagonal is `16sqrt(2)` cm.

Triangle ABC is right-angled at vertex A. Calculate the length of BC, if AB = 18 cm and AC = 24 cm.

Triangle XYZ is right-angled at vertex Z. Calculate the length of YZ, if XY = 13 cm and XZ = 12 cm.

Triangle PQR is right-angled at vertex R. Calculate the length of PR, if: PQ = 34 cm and QR = 33.6 cm.

**The sides of a certain triangle is given below. Find, which of them is right-triangle**

16 cm, 20 cm, and 12 cm

In the given figure, angle ACP = ∠BDP = 90°, AC = 12 m, BD = 9 m and PA= PB = 15 m. Find:**(i)** CP**(ii)** PD**(iii)** CD

In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm

Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm

In the given figure, angle ADB = 90°, AC = AB = 26 cm and BD = DC. If the length of AD = 24 cm; find the length of BC.

A ladder, 6.5 m long, rests against a vertical wall. If the foot of the ladder is 2.5 m from the foot of the wall, find up to how much height does the ladder reach?

A boy first goes 5 m due north and then 12 m due east. Find the distance between the initial and the final position of the boy.

In the figure below, find the value of 'x'.

In the figure below, find the value of 'x'.

In the right-angled ∆PQR, ∠ P = 90°. If l(PQ) = 24 cm and l(PR) = 10 cm, find the length of seg QR.

The top of a ladder of length 15 m reaches a window 9 m above the ground. What is the distance between the base of the wall and that of the ladder?

Find the Pythagorean triplets from among the following set of numbers.

3, 4, 5

Find the Pythagorean triplet from among the following set of numbers.

4, 5, 6

The sides of the triangle are given below. Find out which one is the right-angled triangle?

11, 60, 61

The sides of the triangle are given below. Find out which one is the right-angled triangle?

1.5, 1.6, 1.7

The sides of the triangle are given below. Find out which one is the right-angled triangle?

40, 20, 30

From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.

Calculate the area of a right-angled triangle whose hypotenuse is 65cm and one side is 16cm.

A right triangle has hypotenuse p cm and one side q cm. If p - q = 1, find the length of third side of the triangle.

Each side of rhombus is 10cm. If one of its diagonals is 16cm, find the length of the other diagonals.

In an equilateral triangle ABC, the side BC is trisected at D. Prove that 9 AD^{2 }= 7 AB^{2}.

From a point O in the interior of aΔABC, perpendicular OD, OE and OF are drawn to the sides BC, CA and AB respectively. Prove that: AF^{2} + BD^{2} + CE^{2 }= OA^{2} + OB^{2} + OC^{2} - OD^{2} - OE^{2} - OF^{2}

In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB^{2} + AC^{2} = 2AD^{2 }+ `(1)/(2)"BC"^2`

In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.

Prove that: 9BP^{2} = 9BC^{2} + 4AC^{2}

In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.

Prove that : 9(AQ^{2} + BP^{2}) = 13AB^{2}

∆ABC is right-angled at C. If AC = 5 cm and BC = 12 cm. find the length of AB.

A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?

There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?

To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?

The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ^{2} = 2PR^{2} + QR^{2}

Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of `(20 "km")/"hr"` and the second train travels at `(30 "km")/"hr"`. After 2 hours, what is the distance between them?

If in a ΔPQR, PR^{2} = PQ^{2} + QR^{2}, then the right angle of ∆PQR is at the vertex ________

In a right angled triangle, the hypotenuse is the greatest side

Find the unknown side in the following triangles

Find the unknown side in the following triangles

An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height

Find the distance between the helicopter and the ship

In triangle ABC, line I, is a perpendicular bisector of BC.

If BC = 12 cm, SM = 8 cm, find CS

The hypotenuse of a right angled triangle of sides 12 cm and 16 cm is __________

Find the length of the support cable required to support the tower with the floor

In the figure, find AR

From given figure, In ∆ABC, If AC = 12 cm. then AB =?

Activity: From given figure, In ∆ABC, ∠ABC = 90°, ∠ACB = 30°

∴ ∠BAC = `square`

∴ ∆ABC is 30° – 60° – 90° triangle

∴ In ∆ABC by property of 30° – 60° – 90° triangle.

∴ AB = `1/2` AC and `square` = `sqrt(3)/2` AC

∴ `square` = `1/2 xx 12` and BC = `sqrt(3)/2 xx 12`

∴ `square` = 6 and BC = `6sqrt(3)`

Sides AB and BE of a right triangle, right-angled at B are of lengths 16 cm and 8 cm respectively. The length of the side of largest square FDGB that can be inscribed in the triangle ABE is ______.

Foot of a 10 m long ladder leaning against a vertical wall is 6 m away from the base of the wall. Find the height of the point on the wall where the top of the ladder reaches.

Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle.

In an isosceles triangle PQR, the length of equal sides PQ and PR is 13 cm and base QR is 10 cm. Find the length of perpendicular bisector drawn from vertex P to side QR.

In the adjoining figure, a tangent is drawn to a circle of radius 4 cm and centre C, at the point S. Find the length of the tangent ST, if CT = 10 cm.

Two trees 7 m and 4 m high stand upright on a ground. If their bases (roots) are 4 m apart, then the distance between their tops is ______.

The perimeter of the rectangle whose length is 60 cm and a diagonal is 61 cm is ______.

Two angles are said to be ______, if they have equal measures.

If two legs of a right triangle are equal to two legs of another right triangle, then the right triangles are congruent.

Two poles of 10 m and 15 m stand upright on a plane ground. If the distance between the tops is 13 m, find the distance between their feet.

The foot of a ladder is 6 m away from its wall and its top reaches a window 8 m above the ground. Find the length of the ladder.