Maharashtra State Board course SSC (English Medium) Class 10th Board Exam
Share
Notifications

View all notifications

In the Given Figure, Radius of the Circle is 7 Cm and M ( Arc Mbn) = 60°,Find A(O - Mbn) . - Geometry

Login
Create free account


      Forgot password?

Question

In the given figure, radius of the circle is 7 cm and m ( arc MBN) = 60°,
find  A(O - MBN) . 

Solution

Radius of the circle, r = 7 cm
m(arc MBN) = ∠MON = θ = 60º

Area of the sector =` theta/360 xx pir^2`

⇒ Area ( O - MBN ) =`60/360 `× Area of circle 

Area of the sector = \[\frac{\theta}{360º} \times \pi r^2 = \frac{60º}{360º } \times \frac{22}{7} \times \left( 7 \right)^2\]  = 25.7 cm2

 A(O- MBN) = 25.7 sq. cm 

  Is there an error in this question or solution?

APPEARS IN

 Balbharati Solution for Balbharati Class 10 Mathematics 2 Geometry (2018 to Current)
Chapter 7: Mensuration
Practice set 7.3 | Q: 6.2 | Page no. 154
Solution In the Given Figure, Radius of the Circle is 7 Cm and M ( Arc Mbn) = 60°,Find A(O - Mbn) . Concept: Perimeter and Area of a Circle.
S
View in app×