Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
MCQ
Fill in the Blanks
In the following figure, if O is the centre of a circle, PQ is a chord and the tangent PR at P makes an angle of 50° with PQ, then ∠POQ is equal to ______
Options
100°
80°
90°
75°
Advertisement Remove all ads
Solution
In the following figure, if O is the centre of a circle, PQ is a chord and the tangent PR at P makes an angle of 50° with PQ, then ∠POQ is equal to 100°.
Explanation:
From figure using properties of circle and tangents
∠OPQ = 90° - 50°
∠OPQ = 40°
OP = OQ = radius
So (∠E) = ∠OQP = 40°
Now In ∆POQ
∠POQ = 180° – (∠OPQ + ∠OQP)
∠POQ = 180° – (40° + 40°)
∠POQ = 100°
Concept: Concept of Circle - Centre, Radius, Diameter, Arc, Sector, Chord, Segment, Semicircle, Circumference, Interior and Exterior, Concentric Circles
Is there an error in this question or solution?