Advertisement Remove all ads

In the Figure of δPqr , ∠P = θ° and ∠R =∅° Find (I) √ X + 1 Cot ∅ (Ii) √ X 3 + X 2 Tan θ (Iii) Cos θ - Mathematics

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Sum

In the figure of ΔPQR , ∠P = θ°  and ∠R =∅° find
(i)  `sqrt(X +1) cot ∅`

(ii)`sqrt( x^3 + x ^2) tantheta`

(iii) cos θ 

Advertisement Remove all ads

Solution

In Δ𝑃𝑄𝑅, ∠𝑄 = 900,
Using Pythagoras theorem, we get
𝑃𝑄 = `sqrt(PR^2 − QR^2)`
= `sqrt ((x + 2)^2 − x^2)`

= `sqrt(x^2 + 4x + 4 − x^2)`
= `sqrt(4 (x+ 1))`
= `2sqrt(x + 1)`
Now,

(i)  `(sqrt(x+1) cot theta`

=`(sqrt(x+1))xx(QR)/(PQ)`

=`(sqrt(x+1))xx x/(2 sqrt(x+1))`

=`x/2`

(ii) `(sqrt(x^3+x^2)) tan theta` 

= `(sqrt(x^2(x+1)))xx(QR)/(PQ)`

`=x sqrt((x+1))xx x/(2sqrt(x+1)`

= `x^2/2`

(iii) cos θ

=`(PQ)/(PR)   theta=(2sqrt(x+1))/(x+2)`

Concept: Trigonometric Ratios and Its Reciprocal
  Is there an error in this question or solution?

APPEARS IN

RS Aggarwal Secondary School Class 10 Maths
Chapter 5 Trigonometric Ratios
Q 33
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×