###### Advertisements

###### Advertisements

In the class intervals 10 – 20, 20 – 30, the number 20 is included in ______.

#### Options

10 – 20

20 – 30

Both the intervals

None of these

###### Advertisements

#### Solution

In the class intervals 10 – 20, 20 – 30, the number 20 is included in **20 – 30**.

**Explanation:**

Since, the class interval 10 – 20 is the first interval of frequency distribution and 20 – 30 is the next one but the number 20 is present in both intervals.

We know that, the presence of 20 in the interval 10 – 20 is not fully 100% while in the next interval 20 – 30, presence of it fully 100%.

#### APPEARS IN

#### RELATED QUESTIONS

Durations of sunshine (in hours) in Amritsar for first 10 days of August 1997 as reported by

the Meteorological Department are given below: 9.6, 5.2, 3.5, 1.5, 1.6, 2.4, 2.6, 8.4, 10.3, 10.9

(i) Find the mean 𝑋 ̅

(ii) Verify that = `sum _ ( i = 1)^10`(x_{i} - x ) = 0

Find the median of the following data : 41, 43, 127, 99, 61, 92, 71, 58, 57 If 58 is replaced

by 85, what will be the new median.

Find the mode from the following data:

125, 175, 225, 125, 225, 175, 325, 125, 375, 225, 125

If the median of scores \[\frac{x}{2}, \frac{x}{3}, \frac{x}{4}, \frac{x}{5}\] and \[\frac{x}{6}\] (where x > 0) is 6, then find the value of \[\frac{x}{6}\] .

The mean of n observations is X. If *k* is added to each observation, then the new mean is

*A, B, C* are three sets of values of* x*:

(a) A: 2, 3, 7, 1, 3, 2, 3

(b) 7, 5, 9, 12, 5, 3, 8

(c) 4, 4, 11, 7, 2, 3, 4

Which one of the following statements is correct?

The empirical relation between mean, mode and median is

Yield of soyabean per acre in quintal in Mukund's field for 7 years was 10, 7, 5, 3, 9, 6, 9. Find the mean of yield per acre.

Find the median of the observations, 59, 75, 68, 70, 74, 75, 80.

The monthly salaries in rupees of 30 workers in a factory are given below.

5000, 7000, 3000, 4000, 4000, 3000, 3000, 3000, 8000, 4000, 4000, 9000, 3000, 5000, 5000, 4000, 4000, 3000, 5000, 5000, 6000, 8000, 3000, 3000, 6000, 7000, 7000, 6000, 6000, 4000

From the above data find the mean of monthly salary.

A hockey player has scored following number of goals in 9 matches. 5, 4, 0, 2, 2, 4, 4, 3, 3.

Find the mean, median and mode of the data.

The mean salary of 20 workers is Rs.10,250. If the salary of office superintendent is added, the mean will increase by Rs.750. Find the salary of the office superintendent.

The mean of nine numbers is 77. If one more number is added to it then the mean increases by 5. Find the number added in the data.

If the mean of the following data is 20.2, then find the value of p.

x_{i} |
10 | 15 | 20 | 25 | 30 |

f_{i} |
6 | 8 | p | 10 | 6 |

Let m be the mid-point and l be the upper-class limit of a class in a continuous frequency distribution. The lower class limit of the class is ______.

A grouped frequency distribution table with classes of equal sizes using 63 – 72 (72 included) as one of the class is constructed for the following data: 30, 32, 45, 54, 74, 78, 108, 112, 66, 76, 88, 40, 14, 20, 15, 35, 44, 66, 75, 84, 95, 96, 102, 110, 88, 74, 112, 14, 34, 44. The number of classes in the distribution will be ______.

Mode of the data 15, 14, 19, 20, 14, 15, 16, 14, 15, 18, 14, 19, 15, 17, 15 is ______.

There are 10 observations arranged in ascending order as given below. 45, 47, 50, 52, x, x + 2, 60, 62, 63, 74. The median of these observations is 53. Find the value of x. Also find the mean and the mode of the data.