In space communication, the sound waves can be sent from one place to another - Physics

Advertisements
Advertisements
MCQ

In space communication, the sound waves can be sent from one place to another

Options

  • through space

  • through wires

  • by superimposing it on undamped electromagnetic waves

  • by superimposing it on damped electromagnetic waves

Advertisements

Solution

by superimposing it on undamped electromagnetic waves

  Is there an error in this question or solution?

RELATED QUESTIONS

How are em waves produced by oscillating charges?


Arrange the following electromagnetic wave in the order of their increasing wavelength:

(a) γ- rays

(b) Microwaves

(c) X-rays

(d) Radio waves


In a plane electromagnetic wave, the electric field oscillates sinusoidally at a frequency of 2.0 × 1010 Hz and amplitude 48 V m−1.

(a) What is the wavelength of the wave?

(b) What is the amplitude of the oscillating magnetic field?

(c) Show that the average energy density of the E field equals the average energy density of the B field. [c = 3 × 108 m s−1]


Identify the electromagnetic waves whose wavelengths vary as:

(a) 10–12 m < λ < 10–8 m

(b) 10–3 m < λ < 10–1 m

Write one use for each.


What is the ratio of the speed of gamma rays to that of radio waves in a vacuum?


How are electric vector `(vec "E")`, magnetic vector `(vec "B")` and velocity vector `(vec "C")` oriented in an electromagnetic wave?


Why is the amount of the momentum transferred by the em waves incident on the surface so small ?


Arrange the following electromagnetic waves in decreasing order of wavelength:

γ-rays, infrared rays, X-rays and microwaves.

Write the following radiations in ascending order with respect to their frequencies:

X-rays, microwaves, UV rays and radio waves.


In a microwave oven, the food is kept in a plastic container and the microwaves is directed towards the food. The food is cooked without melting or igniting the plastic container. Explain.


Can an electromagnetic wave be polarised?


A plane electromagnetic wave is passing through a region. Consider (a) electric field (b) magnetic field (c) electrical energy in a small volume and (d) magnetic energy in a small volume. Construct the pairs of the quantities that oscillate with equal frequencies.


An electromagnetic wave going through vacuum is described by
E = E0 sin (kx − ωt); B = B0 sin (kx − ωt).
Which of the following equations is true?


Speed of electromagnetic waves is the same


A point charge is moving along a straight line with a constant velocity v. Consider a small area A perpendicular to the motion of the charge. Calculate the displacement current through the area when its distance from the charge is x. The value of x is not large, so that the electric field at any instant is essentially given by Coulomb's law.


Consider the situation of the previous problem. Define displacement resistance Rd = V/idof the space between the plates, where V is the potential difference between the plates and id is the displacement current. Show that Rd varies with time as `R_d = R(e^(t"/"tau) - 1)` .


A laser beam has intensity 2.5 × 1014 W m−2. Find amplitudes of electric and magnetic fields in the beam.


The energy associated with light of which of the following colours is minimum : 


This is an example of step-up transformer .


Define frequency modulation and state any one advantage of frequency modulation (FM) over amplitude modulation (AM). 


State any one property which is common to all electromagnetic waves.


The energy levels of an atom of a certain element are shown in the given figure. Which one of the transitions A, B, C, D or E will result in the emission of photons of electromagnetic radiation of wavelength 618.75 nm? Support your answer with mathematical calculations.


If the amplitude of the magnetic field is 3 x 10-6 T, then amplitude of the electric field for a electromagnetic waves is ______.


Which of the following electromagnetic radiations is used for viewing objects through fog ______.


An e.m. wave is propagating in a medium with a velocity `vec"v" = "v" hat"i"`. The instantaneous oscillating electric field of this e.m. wave is along +y-axis, then the direction of an oscillating magnetic field of the e.m. wave will be along:


Which of the following is an electromagnetic wave?


Write notes on Gauss' law in magnetism.


Give two uses of Microwaves.


What are Fraunhofer lines? How are they useful in the identification of elements present in the Sun?


Write a short note on the X-ray.


Explain the importance of Maxwell’s correction.


Explain the types of absorption spectrum.


A man standing on the road has to hold his umbrella at 30° with the vertical to keep the rain away. He throws away the umbrella and starts, running at 10 km/h and finds raindrops hitting his head vertically. The speed of the raindrops with respect to the road is ______.


Which one of the following does not represent simple harmonic motion? Here y denotes the instantaneous displacement. Here, A and B are constants and co is the angular frequency.


A plane electromagnetic wave travels in free space along x-axis. At a particular point in space, the electric field along y-axis is 9.3 Vm−1. The magnetic induction (B) along z-axis is:


Which of the following electromagnetic radiations has the smallest wave length?


Maxwell's equation describe the fundamental law of


The velocity of light in vacuum can be changed by changing


The velocity of electromagnetic wave is parallel to


Dimensions of ε0 `(d phi_ε)/(dt)` are of


For which frequency of light, the eye is most sensitive?


Electromagnetic waves are produced by ______.


Which of the following type of radiations are radiated by an oscillating electric charge?


For a plane electromagnetic wave propagating in x-direction, which one of the following combinations gives the correct possible directions for electric field (E) and magnetic field (B) respectively?


For a plane electromagnetic wave propagating in the x-direction, which one of the following combinations gives the correct possible directions for the electric field (E) and magnetic field (B) respectively?


Why is the orientation of the portable radio with respect to broadcasting station important?


Professor C.V Raman surprised his students by suspending freely a tiny light ball in a transparent vacuum chamber by shining a laser beam on it. Which property of EM waves was he exhibiting? Give one more example of this property.


Show that the radiation pressure exerted by an EM wave of intensity I on a surface kept in vacuum is I/c.


The intensity of the light from a bulb incident on a surface is 0.22 W/m2 . The amplitude of the magnetic field in this light-wave is ______× 10–9 T. 

(Given: Permittivity of vacuum ε0 = 8.85 × 10–12 C2 N–1 – m–2, speed of light in vacuum c = 3 × 108 ms-1)


A plane electromagnetic wave of frequency 500 MHz is travelling in a vacuum along a y-direction.

At a particular point in space and time, `vec"B"` = 8.0 × 10-8 `hat"Z"`T. The value of the electric field at this point is ______.

(speed of light = 3 × 108 ms-1)

`hat x, hat y, hat z` are unit vectors along x, y, and Z directions.


For an electromagnetic wave travelling in free space, the relation between average energy densities due to electric (Ue) and magnetic (Um) fields is ______.


The electric field in a plane electromagnetic wave is given by `vecE = 200cos[((0.5 xx 10^3)/m)x - (1.5 xx 10^11 "rad"/s xx t)]V/mhatj`. If the wave falls normally on a perfectly reflecting surface having an area of 100 cm2. If the radiation pressure exerted by the E.M. wave on the surface during a 10-minute exposure is `x/10^9 N/m^2`. Find the value of x.


A plane electromagnetic wave travels in free space along the x-direction. The electric field component of the wave at a particular point of space and time is E = 6 Vm-1 along the y-direction. Its corresponding magnetic field component, B would be ______.


A plane electromagnetic wave with frequency of 30 MHz travels in free space. At particular point in space and time, electric field is 6 V/m. The magnetic field at this point will be x × 10-8 T. The value of x is ______.


An electromagnetic wave of frequency 3 GHz enters a dielectric medium of relative electric permittivity 2.25 from vacuum. The wavelength of this wave in that medium will be ______ × 10-2 cm. 


In a plane electromagnetic wave, the direction of electric field and magnetic field are represented by `hat"k"` and 2`hat"i" - 2hat"j"`, respectively. What is the unit vector along direction of propagation of the wave.


A 27 mW laser beam has a cross-sectional area of 10 mm2. The magnitude of the maximum electric field in this electromagnetic wave is given by:

[Given permittivity of space ∈0 = 9 × 10-12 SI units, Speed of light c = 3  108 m/s] 


An electromagnetic wave of frequency v = 3.0 MHz passes from vacuum into a dielectric medium with permittivity ∈ = 4.0. Then ______.


Name the electromagnetic wave/radiation which is used to study crystal structure.


Share
Notifications



      Forgot password?
Use app×