###### Advertisements

###### Advertisements

In right angle ΔABC, if ∠B = 90°, AB = 6, BC = 8, then find AC.

###### Advertisements

#### Solution

In ΔABC, ∠B = 90°, AB = 6, BC = 8

By Pythagoras theorem,

AC^{2} = AB^{2} + BC^{2}

= 6^{2} + 8^{2}

= 36 + 64

AC^{2 }= 100

∴ AC = 10 units

#### APPEARS IN

#### RELATED QUESTIONS

If the sides of a triangle are 6 cm, 8 cm and 10 cm, respectively, then determine whether the triangle is a right angle triangle or not.

The points A(4, 7), B(p, 3) and C(7, 3) are the vertices of a right traingle ,right-angled at B. Find the values of p.

If ABC is an equilateral triangle of side a, prove that its altitude = ` \frac { \sqrt { 3 } }{ 2 } a`

The perpendicular AD on the base BC of a ∆ABC intersects BC at D so that DB = 3 CD. Prove that `2"AB"^2 = 2"AC"^2 + "BC"^2`

Sides of triangle are given below. Determine it is a right triangle or not? In case of a right triangle, write the length of its hypotenuse. 50 cm, 80 cm, 100 cm

PQR is a triangle right angled at P and M is a point on QR such that PM ⊥ QR. Show that PM^{2} = QM . MR

In Figure, ABD is a triangle right angled at A and AC ⊥ BD. Show that AD^{2} = BD × CD

In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

Tick the correct answer and justify: In ΔABC, AB = `6sqrt3` cm, AC = 12 cm and BC = 6 cm.

The angle B is:

A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.

The diagonals of a rhombus measure 16 cm and 30 cm. Find its perimeter.

Prove that, in a right-angled triangle, the square of the hypotenuse is equal to the sum of the square of remaining two sides

In the given figure, ∆ABC is an equilateral triangle of side 3 units. Find the coordinates of the other two vertices ?

**Identify, with reason, if the following is a Pythagorean triplet.**

(3, 5, 4)

**Identify, with reason, if the following is a Pythagorean triplet.**(10, 24, 27)

**Identify, with reason, if the following is a Pythagorean triplet.**

(11, 60, 61)

In the given figure, ∠DFE = 90°, FG ⊥ ED, If GD = 8, FG = 12, find (1) EG (2) FD and (3) EF

In the given figure, M is the midpoint of QR. ∠PRQ = 90°. Prove that, PQ^{2 }= 4PM^{2 }– 3PR^{2}.

^{}

In ∆PQR, point S is the midpoint of side QR. If PQ = 11, PR = 17, PS = 13, find QR.

In ∆ABC, AB = 10, AC = 7, BC = 9, then find the length of the median drawn from point C to side AB.

Some question and their alternative answer are given. Select the correct alternative.

If a, b, and c are sides of a triangle and a^{2 }+ b^{2 }= c^{2}, name the type of triangle.

Pranali and Prasad started walking to the East and to the North respectively, from the same point and at the same speed. After 2 hours distance between them was \[15\sqrt{2}\]

km. Find their speed per hour.

In an isosceles triangle, length of the congruent sides is 13 cm and its base is 10 cm. Find the distance between the vertex opposite the base and the centroid.

In a trapezium ABCD, seg AB || seg DC seg BD ⊥ seg AD, seg AC ⊥ seg BC, If AD = 15, BC = 15 and AB = 25. Find A(▢ABCD)

In ΔMNP, ∠MNP = 90˚, seg NQ ⊥ seg MP, MQ = 9, QP = 4, find NQ.

**A man goes 40 m due north and then 50 m due west. Find his distance from the starting point.**

**In the figure: ∠PSQ = 90 ^{o}, PQ = 10 cm, QS = 6 cm and RQ = 9 cm. Calculate the length of PR.**

**Two poles of heights 6 m and 11 m stand vertically on a plane ground. If the distance between their feet is 12 m;**

find the distance between their tips.

**In triangle ABC, AB = AC = x, BC = 10 cm and the area of the triangle is 60 cm ^{2}.**

Find x.

**In the figure, given below, AD ⊥ BC. **Prove that: c

^{2}= a

^{2}+ b

^{2}- 2ax.

In equilateral Δ ABC, AD ⊥ BC and BC = x cm. Find, in terms of x, the length of AD.

**In an isosceles triangle ABC; AB = AC and D is the point on BC produced.**

Prove that: AD^{2} = AC^{2} + BD.CD.

**O is any point inside a rectangle ABCD.**

Prove that: OB^{2} + OD^{2} = OC^{2} + OA^{2}.

**In a rectangle ABCD,**

prove that: AC^{2} + BD^{2} = AB^{2} + BC^{2} + CD^{2} + DA^{2}.

**M andN are the mid-points of the sides QR and PQ respectively of a PQR, right-angled at Q.**

Prove that:

(i) PM^{2} + RN^{2} = 5 MN^{2}(ii) 4 PM^{2} = 4 PQ^{2} + QR^{2}(iii) 4 RN^{2} = PQ^{2} + 4 QR^{2}(iv) 4 (PM^{2} + RN^{2}) = 5 PR^{2}

Find the length of diagonal of the square whose side is 8 cm.

Triangle ABC is right-angled at vertex A. Calculate the length of BC, if AB = 18 cm and AC = 24 cm.

Triangle XYZ is right-angled at vertex Z. Calculate the length of YZ, if XY = 13 cm and XZ = 12 cm.

Triangle PQR is right-angled at vertex R. Calculate the length of PR, if: PQ = 34 cm and QR = 33.6 cm.

**The sides of a certain triangle is given below. Find, which of them is right-triangle**

16 cm, 20 cm, and 12 cm

**The sides of a certain triangle is given below. Find, which of them is right-triangle**

6 m, 9 m, and 13 m

In the given figure, angle BAC = 90°, AC = 400 m, and AB = 300 m. Find the length of BC.

In triangle PQR, angle Q = 90°, find: PQ, if PR = 34 cm and QR = 30 cm

Show that the triangle ABC is a right-angled triangle; if: AB = 9 cm, BC = 40 cm and AC = 41 cm

In the given figure, angle ACB = 90° = angle ACD. If AB = 10 m, BC = 6 cm and AD = 17 cm, find :

(i) AC

(ii) CD

A ladder, 6.5 m long, rests against a vertical wall. If the foot of the ladder is 2.5 m from the foot of the wall, find up to how much height does the ladder reach?

In the figure below, find the value of 'x'.

In the figure below, find the value of 'x'.

In the right-angled ∆PQR, ∠ P = 90°. If l(PQ) = 24 cm and l(PR) = 10 cm, find the length of seg QR.

In the right-angled ∆LMN, ∠M = 90°. If l(LM) = 12 cm and l(LN) = 20 cm, find the length of seg MN.

Find the Pythagorean triplet from among the following set of numbers.

4, 5, 6

Find the Pythagorean triplet from among the following set of numbers.

9, 40, 41

The sides of the triangle are given below. Find out which one is the right-angled triangle?

8, 15, 17

The sides of the triangle are given below. Find out which one is the right-angled triangle?

1.5, 1.6, 1.7

The sides of the triangle are given below. Find out which one is the right-angled triangle?

40, 20, 30

From the given figure, find the length of hypotenuse AC and the perimeter of ∆ABC.

The foot of a ladder is 6m away from a wall and its top reaches a window 8m above the ground. If the ladder is shifted in such a way that its foot is 8m away from the wall to what height does its tip reach?

In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB^{2} = AD^{2} - BC x CE + `(1)/(4)"BC"^2`

In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AB^{2} + AC^{2} = 2AD^{2 }+ `(1)/(2)"BC"^2`

In a triangle ABC, AC > AB, D is the midpoint BC, and AE ⊥ BC. Prove that: AC^{2} - AB^{2 }= 2BC x ED

In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.

Prove that: 9AQ^{2 }= 9AC^{2} + 4BC^{2}

In a triangle ABC right angled at C, P and Q are points of sides CA and CB respectively, which divide these sides the ratio 2 : 1.

Prove that : 9(AQ^{2} + BP^{2}) = 13AB^{2}

In the given figure, PQ = `"RS"/(3)` = 8cm, 3ST = 4QT = 48cm.

SHow that ∠RTP = 90°.

In a right-angled triangle ABC,ABC = 90°, AC = 10 cm, BC = 6 cm and BC produced to D such CD = 9 cm. Find the length of AD.

In the given figure. PQ = PS, P =R = 90°. RS = 20 cm and QR = 21 cm. Find the length of PQ correct to two decimal places.

Determine whether the triangle whose lengths of sides are 3 cm, 4 cm, 5 cm is a right-angled triangle.

A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?

There are two paths that one can choose to go from Sarah’s house to James's house. One way is to take C street, and the other way requires to take B street and then A street. How much shorter is the direct path along C street?

To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?

The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ^{2} = 2PR^{2} + QR^{2}

Two trains leave a railway station at the same time. The first train travels due west and the second train due north. The first train travels at a speed of `(20 "km")/"hr"` and the second train travels at `(30 "km")/"hr"`. After 2 hours, what is the distance between them?

If in a ΔPQR, PR^{2} = PQ^{2} + QR^{2}, then the right angle of ∆PQR is at the vertex ________

In a right angled triangle, the hypotenuse is the greatest side

Find the unknown side in the following triangles

Find the unknown side in the following triangles

Find the unknown side in the following triangles

An isosceles triangle has equal sides each 13 cm and a base 24 cm in length. Find its height

Find the distance between the helicopter and the ship

In triangle ABC, line I, is a perpendicular bisector of BC.

If BC = 12 cm, SM = 8 cm, find CS

The hypotenuse of a right angled triangle of sides 12 cm and 16 cm is __________

Find the length of the support cable required to support the tower with the floor

**Choose the correct alternative:**

If length of sides of a triangle are a, b, c and a^{2} + b^{2} = c^{2}, then which type of triangle it is?

In a right angled triangle, if length of hypotenuse is 25 cm and height is 7 cm, then what is the length of its base?

Prove that the area of the equilateral triangle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the equilateral triangles drawn on the other two sides of the triangle.

In an isosceles triangle PQR, the length of equal sides PQ and PR is 13 cm and base QR is 10 cm. Find the length of perpendicular bisector drawn from vertex P to side QR.

The top of a broken tree touches the ground at a distance of 12 m from its base. If the tree is broken at a height of 5 m from the ground then the actual height of the tree is ______.

The longest side of a right angled triangle is called its ______.

In a triangle, sum of squares of two sides is equal to the square of the third side.

If two legs of a right triangle are equal to two legs of another right triangle, then the right triangles are congruent.

If the hypotenuse of one right triangle is equal to the hypotenuse of another right triangle, then the triangles are congruent.

Points A and B are on the opposite edges of a pond as shown in figure. To find the distance between the two points, the surveyor makes a right-angled triangle as shown. Find the distance AB.

Two poles of 10 m and 15 m stand upright on a plane ground. If the distance between the tops is 13 m, find the distance between their feet.