Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that ∠ROS = 1/2(∠QOS - ∠POS).
Advertisement Remove all ads
Solution
It is given that OR ⊥ PQ
∴ ∠POR = 90º
⇒ ∠POS + ∠SOR = 90º
∠ROS = 90º − ∠POS … (1)
∠QOR = 90º (As OR ⊥ PQ)
∠QOS − ∠ROS = 90º
∠ROS = ∠QOS − 90º … (2)
On adding equations (1) and (2), we obtain
2 ∠ROS = ∠QOS − ∠POS
∠ROS = 1/2(∠QOS - ∠POS)
Concept: Pairs of Angles
Is there an error in this question or solution?