Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
In the given figure, if lines PQ and RS intersect at point T, such that ∠PRT = 40º, ∠RPT = 95º and ∠TSQ = 75º, find ∠SQT.
Advertisement Remove all ads
Solution
Using angle sum property for ΔPRT, we obtain
∠PRT + ∠RPT + ∠PTR = 180º
40º + 95º + ∠PTR = 180º
∠PTR = 180º − 135º
∠PTR = 45º
∠STQ = ∠PTR = 45º (Vertically opposite angles)
∠STQ = 45º
By using angle sum property for ΔSTQ, we obtain
∠STQ + ∠SQT + ∠QST = 180º
45º + ∠SQT + 75º = 180º
∠SQT = 180º − 120º
∠SQT = 60º
Concept: Angle Sum Property of a Triangle
Is there an error in this question or solution?