Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
In Given Figure, find tan P – cot R.
Advertisement Remove all ads
Solution
Applying Pythagoras theorem for ΔPQR, we obtain
PR2 = PQ2 + QR2
(13 cm)2 = (12 cm)2 + QR2
169 cm2 = 144 cm2 + QR2
25 cm2 = QR2
QR = 5 cm
`tan P = ("Side opposite to"angle P)/("Side adjacent to"angleP) = (QR)/(PQ)`
= 5/12
`cot R = ("Side opposite to"angle R)/("Side adjacent to"angleR) = (QR)/(PQ)`
= 5/12
tan P - cot R = ` 5/12 - 5/12 = 0`
Concept: Trigonometric Ratios
Is there an error in this question or solution?