# In the Given Figure, a is the Centre of the Circle. ∠ Abc = 45° and Ac = 7 √ 2 Cm. Find the Area of Segment Bxc. - Geometry

Sum

In the given figure, A is the centre of the circle. $\angle$ABC = 45° and AC = 7 $\sqrt{2}$cm. Find the area of segment BXC.

#### Solution

In ∆ABC,
AB = AC        (Radii of the circle)
∴ ∠ACB = ∠ABC = 45º        (Equal sides have equal angles opposite to them)
Using angle sum property, we have
∠ACB + ∠ABC + ∠BAC = 180º
∴ 45º + 45º + ∠BAC = 180º
⇒ ∠BAC = 180º − 90º = 90º
Here,
Radius of the circle, r = $7\sqrt{2}$cm Measure of arc BXC, θ = 90º
∴ Area of segment BXC

$= r^2 \left( \frac{\pi\theta}{360° } - \frac{\sin\theta}{2} \right)$

$= \left( 7\sqrt{2} \right)^2 \left( \frac{22}{7} \times \frac{90°}{360°} - \frac{\sin90°}{2} \right)$

$= 98 \times \frac{22}{7} \times \frac{1}{4} - 98 \times \frac{1}{2}$

$= 77 - 49$

$= 28 {cm}^2$

Thus, the area of the segment BXC is 28 cm2.

Concept: Areas of Sector and Segment of a Circle
Is there an error in this question or solution?

#### APPEARS IN

Balbharati Mathematics 2 Geometry 10th Standard SSC Maharashtra State Board
Chapter 7 Mensuration
Practice set 7.4 | Q 1 | Page 159