In the Given Figure, a ∆Abc is Drawn to Circumscribe a Circle of Radius 4 Cm Such that the Segments Bd and Dc Are of Lengths 8 Cm and 6 Cm Respectively. Find the Lengths of Sides Ab and Ac, - Mathematics

Advertisements
Advertisements
Short Note

In the given figure, a ∆ABC is drawn to circumscribe a circle of radius 4 cm such that the segments BD and DC are of lengths 8 cm and 6 cm respectively. Find the lengths of sides AB and AC, when area of ∆ABC is 84 cm2

Advertisements

Solution

Here, D, E and F are the points of contact of the circle with the sides BC, AB and AC, respectively.

OD = OE = OF = 4 cm      (Radii of the circle)

We know that the lengths of tangents drawn from an external point to a circle are equal.

∴ BD = BE = 8 cm

CD = CF = 6 cm

AE = AF = x cm (say)

So, BC = BD + CD = 8 cm + 6 cm = 14 cm

AB = AE + BE = x cm + 8 cm = (x + 8) cm

AC = AF + FC = x cm + 6 cm = (x + 6) cm

Also, the tangent at any point of a circle is perpendicular to the radius through the point of contact.

∴ OD ⊥ BC, OE ⊥ AB and OF ⊥ AC

Now,

ar(∆OBC) + ar(∆OAB) + ar(∆OCA) = ar(∆ABC)

\[\therefore \frac{1}{2} \times BC \times OD + \frac{1}{2} \times AB \times OE + \frac{1}{2} \times AC \times OF = 84 {cm}^2 \]
\[ \Rightarrow \frac{1}{2} \times 14 \times 4 + \frac{1}{2} \times \left( x + 8 \right) \times 4 + \frac{1}{2} \times \left( x + 6 \right) \times 4 = 84\]
\[ \Rightarrow 28 + 2x + 16 + 2x + 12 = 84\]
\[ \Rightarrow 4x + 56 = 84\]

\[\Rightarrow 4x = 84 - 56 = 28\]
\[ \Rightarrow x = 7\]

∴ AB = (x + 8) cm = (7 + 8) cm = 15 cm

AC = (x + 6) cm = (7 + 6) cm = 13 cm

Hence, the lengths of sides AB and AC are 15 cm and 13 cm, respectively.

  Is there an error in this question or solution?
Chapter 8: Circles - Exercise 8.2 [Page 39]

APPEARS IN

RD Sharma Class 10 Maths
Chapter 8 Circles
Exercise 8.2 | Q 42 | Page 39

RELATED QUESTIONS

In the given figure, PQ is a chord of length 8cm of a circle of radius 5cm. The tangents at P and Q intersect at a point T. Find the length TP


In the fig. ABC is right triangle right angled at B such that BC = 6cm and AB = 8cm. Find the radius of its in circle.


In fig. a circle touches all the four sides of quadrilateral ABCD with AB = 6cm, BC = 7cm, CD = 4cm. Find AD.


In the fig. a circle is inscribed in a quadrilateral ABCD in which ∠B = 90° if AD = 23cm,
AB = 29cm and DS = 5cm, find the radius of the circle.


In fig. there are two concentric circles with Centre O of radii 5cm and 3cm. From an
external point P, tangents PA and PB are drawn to these circles if AP = 12cm, find the
tangent length of BP.


Fill in the blank:

A point whose distance from the centre of a circle is greater than its radius lies in ..................... of the circle.


ture or false v

The degree measure of a semi-circle is 180°.


Suppose You Are Given a Circle. Give a Construction to Find Its Centre.


O is the centre of a circle of radius 10 cm. P is any point in the circle such that OP = 6 cm. A is the point travelling along the circumference. x is the distance from A to P. what are the least and the greatest values of x in cm? what is the position of the points O, P and A at these values?


In the given figure, if arc AB = arc CD, then prove that the quadrilateral ABCD is an isosceles– trapezium (O is the centre of the circle).


In the given figure, a circle inscribed in a triangle ABC, touches the sides AB, BC and AC at points D, E and F Respectively. If AB= 12cm, BC=8cm and AC = 10cm, find the length of AD, BE and CF.

 


From an external point P, tangents PA and PB are drawn to a circle with center O. If CD is the tangent to the circle at a point E and PA = 14cm, find the perimeter of ΔPCD.


In the given figure, a circle with center O, is inscribed in a quadrilateral ABCD such that it touches the side BC, AB, AD and CD at points P, Q, R and S respectively. If AB = 29cm, AD = 23cm, ∠B = 90° and DS=5cm then find the radius of the circle.

 


In the given figure common tangents AB and CD to the two circles with centres O1 and O2 intersect at E. Prove that AB=CD


In the given figure, a triangle ABC is drawn to circumscribe a circle of radius 2 cm such that the segments BD and DC into which BC is divided by the point of contact D, are of lengths 4cm and 3cm respectively. If the area of 2 ABC  21cm then find the lengths of sides AB and AC.


In the given figure, O is the centre of the circle. PA and PB are tangents. Show that AOBP  is cyclic quadrilateral.

 


PQ is a chord of length 8 cm of a circle of radius 5 cm. The tangents at P and Q intersect at a point T. Find the lengths of TP and TQ.


A quadrilateral is drawn to circumscribe a circle. Prove that the sums of opposite sides are equal ?


In Fig. 4, a circle inscribed in triangle ABC touches its sides AB, BC and AC at points D, E and F respectively. If AB = 12 cm, BC = 8 cm and AC = 10 cm, then find the lengths of AD, BE and CF.


In the given figure, is the centre of the circle. Find ∠CBD.


In a cyclic quadrilateral ABCD if AB || CD and ∠B = 70°, find the remaining angles.

 

In the given figure, O is the centre of the circle and ∠DAB = 50° . Calculate the values of xand y


In the given figure, O is the centre of the circle. If ∠CEA = 30°, Find the values of xy and z.

 


In the given figure, ABC is a right triangle right-angled at B such that BC = 6 cm and AB = 8 cm. Find the radius of its incircle.


AB and CD are common tangents to two circles of equal radii. Prove that AB = CD.


Choose correct alternative answer and fill in the blank. 

Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is .........


Radius of a circle is 10 cm and distance of a chord from the centre is 6 cm. Hence the length of the chord is ______.


The point of concurrence of all angle bisectors of a triangle is called the ______.


The circle which passes through all the vertices of a triangle is called ______.


Length of a chord of a circle is 24 cm. If distance of the chord from the centre is 5 cm, then the radius of that circle is ______.


The length of the longest chord of the circle with radius 2.9 cm is ______.


Radius of a circle with centre O is 4 cm. If l(OP) = 4.2 cm, say where point P will lie.


The lengths of parallel chords which are on opposite sides of the centre of a circle are 6 cm and 8 cm. If radius of the circle is 5 cm, then the distance between these chords is ______.


Find the length of the chord of a circle in the following when: 

Radius is 13 cm and the distance from the centre is 12 cm 


Find the length of the chord of a circle in the following when: 

Radius is 1. 7cm and the distance from the centre is 1.5 cm 


In following fig. ABC is an equilateral triangle . A circle is drawn with centre A so that ot cuts AB and AC at M and N respectively. Prove that BN = CM.


If all the sides of a parallelogram touch a circle, show that the parallelogram is a rhombus.



In the above figure, `square`XLMT is a rectangle. LM = 21 cm, XL = 10.5 cm. Diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of non-shaded region.


In the given figure, seg MN is a chord of a circle with centre O. MN = 25, L is a point on chord MN such that ML = 9 and d(O,L) = 5. Find the radius of the circle. 


The figure given below shows a circle with center O in which diameter AB bisects the chord CD at point E. If CE = ED = 8 cm and EB = 4 cm,
find the radius of the circle.


In the following figure, OABC is a square. A circle is drawn with O as centre which meets OC at P and OA at Q.
Prove that:
( i ) ΔOPA ≅ ΔOQC 
( ii ) ΔBPC ≅ ΔBQA


Draw two circles of different radii. How many points these circles can have in common? What is the maximum number of common points?


Suppose you are given a circle. Describe a method by which you can find the center of this circle.


In the above figure, seg AB is a diameter of a circle with centre P. C is any point on the circle.  seg CE ⊥ seg AB. Prove that CE is the geometric mean of AE and EB. Write the proof with the help of the following steps:
a. Draw ray CE. It intersects the circle at D.
b. Show that CE = ED.
c. Write the result using the theorem of the intersection of chords inside a circle. d. Using CE = ED, complete the proof. 


In an equilateral triangle, prove that the centroid and center of the circum-circle (circumcentre) coincide.


Two concentric circles with center O have A, B, C, D as the points of intersection with the lines L shown in the figure. If AD = 12 cm and BC s = 8 cm, find the lengths of AB, CD, AC and BD.


If O is the centre of the circle, find the value of x in each of the following figures


Use the figure given below to fill in the blank:

R is the _______ of the circle.


Use the figure given below to fill in the blank:

______ is a chord of the circle.


Use the figure given below to fill in the blank:

________ is a radius of the circle.


Draw circle with diameter:  8.4 cm

In above case, measure the length of the radius of the circle drawn.


Draw a circle of radius 4.8 cm and mark its center as P.
(i) Draw radii PA and PB such that ∠APB = 45°.
(ii) Shade the major sector of the circle


Construct a triangle ABC with AB = 4.2 cm, BC = 6 cm and AC = 5cm. Construct the circumcircle of the triangle drawn.


Construct a triangle PQR in which, PQ = QR = RP = 5.7 cm. Draw the incircle of the triangle and measure its radius.


The diameter of a circle is 12.6 cm. State, the length of its radius.


State, if the following statement is true or false:

Every diameter bisects a circle and each part of the circle so obtained is a semi-circle.


State, if the following statement is true or false:

The diameters of a circle always pass through the same point in the circle.


If the radius of a circle is 5 cm, what will its diameter be?


Draw circle with the radii given below.

2 cm


Draw circle with the radii given below.

3 cm


Draw a circle with the radii given below.

4 cm


Draw a circle of any radius. Show one diameter, one radius, and one chord on that circle.


In the table below, write the names of the points in the interior and exterior of the circle and those on the circle.

Diagram Points in the interior of the circle Points in the exterior of the circle Points on the circle
     

The diameter of the circle is 52 cm and the length of one of its chord is 20 cm. Find the distance of the chord from the centre


The chord of length 30 cm is drawn at the distance of 8 cm from the centre of the circle. Find the radius of the circle


Find the length of the chord AC where AB and CD are the two diameters perpendicular to each other of a circle with radius `4sqrt(2)` cm and also find ∠OAC and ∠OCA


A chord is 12 cm away from the centre of the circle of radius 15 cm. Find the length of the chord


In a circle, AB and CD are two parallel chords with centre O and radius 10 cm such that AB = 16 cm and CD = 12 cm determine the distance between the two chords?


Two circles of radii 5 cm and 3 cm intersect at two points and the distance between their centres is 4 cm. Find the length of the common chord


A chord is at a distance of 15 cm from the centre of the circle of radius 25 cm. The length of the chord is


In the figure, O is the centre of a circle and diameter AB bisects the chord CD at a point E such that CE = ED = 8 cm and EB = 4 cm. The radius of the circle is


AD is a diameter of a circle and AB is a chord If AD = 30 cm and AB = 24 cm then the distance of AB from the centre of the circle is


The ratio between the circumference and diameter of any circle is _______


A line segment which joins any two points on a circle is a ___________


The longest chord of a circle is __________


The radius of a circle of diameter 24 cm is _______


A part of circumference of a circle is called as _______


Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
15 cm    

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
    1760 cm

Find the missing values in the following table for the circles with radius (r), diameter (d) and Circumference (C).

radius (r) diameter (d) Circumference (C)
  24 m  

All the radii of a circle are _______________


The ______________ is the longest chord of a circle


A line segment joining any point on the circle to its center is called the _____________ of the circle


A line segment with its end points on the circle is called a ______________


Twice the radius is ________________


Find the diameter of the circle

Radius = 8 cm


Find the diameter of the circle

Radius = 6 cm


Find the radius of the circle

Diameter = 24 cm


Find the radius of the circle

Diameter = 30 cm


Find the radius of the circle

Diameter = 76 cm


If O is the center of the circle in the figure alongside, then complete the table from the given information.

The type of arc

Type of circular arc Name of circular arc Measure of circular arc
Minor arc    
Major arc    

In figure, chords AC and DE intersect at B. If ∠ABE = 108°, m(arc AE) = 95°, find m(arc DC).


In figure, O is the centre of a circle, chord PQ ≅ chord RS. If ∠POR = 70° and (arc RS) = 80°, find

(i) m(arc PR)

(ii) m(arc QS) 

(iii) m(arc QSR)


Given: A circle inscribed in a right angled ΔABC. If ∠ACB = 90° and the radius of the circle is r.

To prove: 2r = a + b – c


In a circle with centre P, chord AB is parallel to a tangent and intersects the radius drawn from the point of contact to its midpoint. If AB = `16sqrt(3)`, then find the radius of the circle


In the figure, O is the centre of the circle, and ∠AOB = 90°, ∠ABC = 30°. Then find ∠CAB.


In the figure, a circle touches all the sides of quadrilateral ABCD from the inside. The center of the circle is O. If AD⊥ DC and BC = 38, QB = 27, DC = 25, then find the radius of the circle.


Circles with centres A, B and C touch each other externally. If AB = 36, BC = 32, CA = 30, then find the radii of each circle.


If d1, d2 (d2 > d1) be the diameters of two concentric circles and c be the length of a chord of a circle which is tangent to the other circle, then ______ 


In the adjoining figure, Δ ABC is circumscribing a circle. Then, the length of BC is ______


AB is a diameter of a circle and AC is its chord such that ∠BAC = 30°. If the tangent at C intersects AB extended at D, then BC = BD.


The circumcentre of the triangle ABC is O. Prove that ∠OBC + ∠BAC = 90º.


Prove that angle bisector of any angle of a triangle and perpendicular bisector of the opposite side if intersect, they will intersect on the circumcircle of the triangle.


In figure, O is the centre of the circle, BD = OD and CD ⊥ AB. Find ∠CAB.


Draw two acute angles and one obtuse angle without using a protractor. Estimate the measures of the angles. Measure them with the help of a protractor and see how much accurate is your estimate


In the given figure, O is the centre of the circle. Name all chords of the circle.


In the given figure, O is the centre of the circle. Name a chord, which is not the diameter of the circle.


In the given figure, O is the centre of the circle. Shade the smaller segment of the circle formed by CP.


From the figure, identify three radii.

 


From the figure, identify two points in the interior.


From the figure, identify a segment.


Is every diameter of a circle also a chord?


Draw any circle and mark

  1. it's centre
  2. a radius
  3. a diameter
  4. a sector
  5. a segment
  6. a point in its interior
  7. a point in its exterior
  8. an arc

Say true or false:

The centre of a circle is always in its interior.


A figure is in the form of rectangle PQRS having a semi-circle on side QR as shown in the figure. Determine the area of the plot.


A 7 m broad pathway goes around a circular park with a circumference of 352 m. Find the area of road.


If radius of a circle is 5 cm, then find the length of longest chord of a circle.


AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A.

Write answers to the following questions:

  1. Draw the figure using the given information.
  2. Find the measures of ∠CAT and ∠ABC with reasons.
  3. Whether ∠CAT and ∠ABC are congruent? Justify your answer.

The circumcentre of a triangle is the point which is ______.


Share
Notifications



      Forgot password?
Use app×