Advertisement Remove all ads

In the Following Figure, Seg Dh ⊥ Seg Ef and Seg Gk ⊥ Seg Ef. If Dh = 18 Cm, Gk = 30 Cm and `A(Triangle Def) = 450 Cm^2`, Then Find - Geometry

In the following figure, seg DH ⊥ seg EF and seg GK ⊥ seg EF. If DH = 18 cm, GK = 30 cm and `A(triangle DEF) = 450 cm^2`, then find:

1) EF

2) `A(triangle GFE)`

3) `A(square DFGE)`

Advertisement Remove all ads

Solution

1) Area of a triangle = 1/2 x base x height

`:. A(triangle DEF) = 1/2 xx EF xx DH`

`:. 450 = 1/2 xx EF  xx 18` ......(Substituting the given values)

`:. (450xx2)/18 = EF`

`:. EF = 50    :. EF = 50 cm`

2) `triangle DEF` and `triangle GEF` have then  common base EF

∴ their areas are proportional to their corresponding heights

`:. (A(triangle DEF))/(A(triangle GEF)) = "DH"/"GK"`

`:. 450/(A(triangle GEF))  = 18/30`  ....(Substituting the given values).

`:. A(triangle GEF) = (450xx30)/18 =  750 cm^2`

`:. A(triangle GEF) = 750 cm^2`

3) `A(squareDFGE) = A(squareDEF) + A(squareGEF)` ....(Area addition postulate)

= 450 +  750 = 1200cm2

`:. A(squareDFGE) = 1200 cm^2`

  Is there an error in this question or solution?
Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
Share
Notifications

View all notifications


      Forgot password?
View in app×