In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find A(△ABC)/A(△DCB) - Geometry

Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads

In the following figure seg AB ⊥ seg BC, seg DC ⊥ seg BC. If AB = 2 and DC = 3, find `(A(triangleABC))/(A(triangleDCB))`

Advertisement Remove all ads

Solution

In the following figure ΔABC and ΔDCB have a comman base BC.

`therefore(A(triangleABC))/(A(triangleDCB))=(AB)/(DC)`

(∵The ratio of areas of two triangles with the same base is equal to the ratio of their corresponding heights.)

`therefore(A(triangleABC))/(A(triangleDCB))=2/3`

Concept: Properties of Ratios of Areas of Two Triangles
  Is there an error in this question or solution?
2014-2015 (March) Set B
Share
Notifications



      Forgot password?
View in app×