Advertisement Remove all ads
Advertisement Remove all ads
Advertisement Remove all ads
In the following figure, Q is the centre of a circle and PM, PN are tangent segments to the circle. If ∠MPN = 50°, find ∠MQN.
Advertisement Remove all ads
Solution
Seg PM and seg PN are tangents to the circle and seg QM and seg QN are the radii from the points of contacts.
m∠PMQ = m∠PNQ = 90° ... (Tangent is perpendicular to the radius) ... (1)
The sum of the measures of the angles of a quadrilateral is 360°.
m∠MPN + m∠PMQ + m∠MQN + m∠PNQ = 360°
50° + 90° + m∠MQN + 90° = 360°
230° + m∠MQN = 360°
m∠MQN = 360° – 230° = 130° ... [From (1)]
Concept: Number of Tangents from a Point on a Circle
Is there an error in this question or solution?